首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbenes and silylenes can participate in some insertion reactions both in singlet and in triplet electronic states. The reactivity of silylenes depends on the nature of their substituents. AM1 and PM3 semiempirical calculations were performed for the reactions of silylene and dichlorosilylene insertion into the H-Cl bond of the hydrogen chloride molecule and the C-O bond of the furane molecule. The data obtained was used to propose probable mechanisms of these reactions.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 810–813, May, 1994.  相似文献   

2.
A study of 40 para-substituted anilines is presented. These serve as model structures of amine type antioxidants. Molecules and their radical structures were studied using the AM1 and PM3 quantum chemical methods in order to calculate the N-H bond dissociation enthalpies (BDEs) and ionisation potentials (IPs) which are among the most important characteristics of antioxidants. Calculated BDEs were compared with available experimental values and the results of DFT calculations to ascertain the suitability of AM1 and PM3 methods for amine BDEs calculation. The results show that both methods reproduce experimental BDEs and DFT data satisfactorily. Comparison with experimental data shows that AM1 and PM3 methods overestimate the IP values. The results also indicate that dependences of N-H bond BDEs and IPs on Hammett constants of the substituents are linear.  相似文献   

3.
Heats of formation, atomic charges, and geometries of some 110 structures involving substituted singlet and triplet phenyl and 4,4-dimethyl-1,4-dihydronaphthalene carbenes and the corresponding diazomethanes were calculated by MINDO/3, MNDO, AM1, and PM3 semiempirical molecular orbital methods. The singlet-triplet gaps for AM1 and PM3 calculations for the para derivatives in both systems have been successfully correlated with Brown σ+ constants. Good correlations with σ+ were found for the charges on the carbenic centers of the singlets as well as with the energy barrier for rotation of the aryl group about the C-C single bond in substituted singlet phenylcarbenes. Comparisons of these results with experimental data indicate that AM1 and PM3 are much better than MNDO and MINDO/3 in predicting the intrinsic substituent effects in singlet carbenes.  相似文献   

4.
We have made a conformational study of tetroxane and its bi- and tetra-halogenated derivatives by means of the semiempirical AM1 and PM3 molecular orbital methods. The results are compared with previous semiempirical and ab initio studies as well as with available experimental data. We have found that in every case the AM1 method underestimates the peroxidic O-O bond length by approximately 12%, while the PM3 procedure describes such a bond in a better way. The degree of accuracy of these two semiempirical methods is discussed in relation with the tetroxane structure.  相似文献   

5.
Twenty years ago, the landmark AM1 was introduced, and has since had an increasingly wide following among chemists due to its consistently good results and time-tested reliability--being presently available in countless computational quantum chemistry programs. However, semiempirical molecular orbital models still are of limited accuracy and need to be improved if the full potential of new linear scaling techniques, such as MOZYME and LocalSCF, is to be realized. Accordingly, in this article we present RM1 (Recife Model 1): a reparameterization of AM1. As before, the properties used in the parameterization procedure were: heats of formation, dipole moments, ionization potentials and geometric variables (bond lengths and angles). Considering that the vast majority of molecules of importance to life can be assembled by using only six elements: C, H, N, O, P, and S, and that by adding the halogens we can now build most molecules of importance to pharmaceutical research, our training set consisted of 1736 molecules, representative of organic and biochemistry, containing C, H, N, O, P, S, F, Cl, Br, and I atoms. Unlike AM1, and similar to PM3, all RM1 parameters have been optimized. For enthalpies of formation, dipole moments, ionization potentials, and interatomic distances, the average errors in RM1, for the 1736 molecules, are less than those for AM1, PM3, and PM5. Indeed, the average errors in kcal x mol(-1) of the enthalpies of formation for AM1, PM3, and PM5 are 11.15, 7.98, and 6.03, whereas for RM1 this value is 5.77. The errors, in Debye, of the dipole moments for AM1, PM3, PM5, and RM1 are, respectively, 0.37, 0.38, 0.50, and 0.34. Likewise, the respective errors for the ionization potentials, in eV, are 0.60, 0.55, 0.48, and 0.45, and the respective errors, in angstroms, for the interatomic distances are 0.036, 0.029, 0.037, and 0.027. The RM1 average error in bond angles of 6.82 degrees is only slightly higher than the AM1 figure of 5.88 degrees, and both are much smaller than the PM3 and PM5 figures of 6.98 degrees and 9.83 degrees, respectively. Moreover, a known error in PM3 nitrogen charges is corrected in RM1. Therefore, RM1 represents an improvement over AM1 and its similar successor PM3, and is probably very competitive with PM5, which is a somewhat different model, and not fully disclosed. RM1 possesses the same analytical construct and the same number of parameters for each atom as AM1, and, therefore, can be easily implemented in any software that already has AM1, not requiring any change in any line of code, with the sole exception of the values of the parameters themselves.  相似文献   

6.
The absorption maxima, λmax, of various organic dyes such as indigo, azobenzene, phenylamine, hydrazone, anthraquinone, naphthoquinone, and malachite green were calculated using the AM1, PM3, and PM5 semiempirical molecular orbital theories with the configuration interaction singles (CIS) and random phase approximation (RPA) approaches. The calculated λmax were then compared with the values obtained by CNDO/S, INDO/S, ab initio CIS, and time-dependent density functional theory (TD-DFT). We found that the λmax values calculated by AM1, PM3, and PM5 were in good correlation with the observed λmax values. When B3LYP/cc-pVDZ optimized geometries were used, the square of the correlation coefficients between the calculated and observed λmax, , at the AM1-RPA, PM3-RPA, and PM5-RPA levels were 0.891, 0.897, and 0.927, respectively. In particular, at PM5-RPA//B3LYP/cc-pVDZ was the largest among those obtained from all the other calculations including TD/B3LYP/cc-pVDZ//B3LYP/cc-pVDZ . Accordingly, the standard deviation of the difference between observed and calculated λmax by the linear regression function at PM5-RPA//B3LYP/cc-pVDZ was the smallest. It was therefore concluded that this method was the most promising for the prediction of λmax of various dyes among the computational methods studied here. When AM1 optimized geometries were used, at the AM1-RPA, PM3-RPA, and PM5-RPA levels were 0.822, 0.841, and 0.901, respectively, and they were also comparable to that at TD/B3LYP/cc-pVDZ//B3LYP/cc-pVDZ. Therefore, although some calibration efforts may be needed for AM1 geometries, PM5-RPA(CIS)//AM1 may be a second candidate available for the prediction of the absorption maxima of dyes, especially in the case of emphasizing computational cost.  相似文献   

7.
Semiempirical molecular orbital methods including CNDO, MNDO, AM1 and PM3, and density function theory method B3LYP/3-21G(d) were employed in the study of the alimemazine radical cation. It was found that PM3 was much better than CNDO, MNDO and AM1 in the structural optimization. The bond lengths and bond angles by PM3 were close to the experimental data, and comparable with the results by the density function theory method.  相似文献   

8.
The title compound,(E)-5-methoxy-2-((4-methoxyphenylimino)methyl)phenol(C15H15NO3),crystallizes in monoclinic,space group P21/c with a=9.4361(6),b=10.6212(5),c=12.9338(9),β=93.064(5)o,V=1294.41(14)3,Z=4,Dc=1.320 g/cm3,F(000)=544,Rint=0.116,T=296 K,μ=0.09 mm-1,the final R=0.051 and wR=0.148 for 1836 observed reflections with I2σ(I).An extensive two-dimensional network of C-H…O hydrogen bonds and π-ring interactions are responsible for the crystal stabilization.Intermolecular hydrogen bonds and C-H…π interactions produce R22(14),R44(30) and R44(31) rings.In addition to the molecular geometry from X-ray experiment,the molecular geometry of the title compound in the ground state has been calculated using the semi-empirical(AM1 and PM3) and density functional theory method(DFT)(B3LYP) with 6-31G(d) basis set.To determine the conformational flexibility,molecular energy profile of the title compound was obtained by semi-empirical(PM3 and AM1) and DFT/B3LYP calculations with respect to the selected degree of torsional freedom,which varied from -180° to +180° in a step of 10°.  相似文献   

9.
A series of new dissymmetric chiral Schiff base complexes has been obtained by a systematic condensation of (1S,2S)(+)-diaminocyclohexane and 3-acetyl-4-hydroxy-6-methyl-2-pyrone with salicylaldehyde, 5-chloro-, 5-methoxy-and 5-nitrosalicylaldehyde and by subsequent metallation with manganese and ruthenium. The characterization of the complexes 1–8 was accomplished by physico chemical studies viz. microanalysis, IR-, UV/VIS-, and CD spectral studies, optical rotation, molar conductance measurements and cyclic voltammetry. Enantioselective epoxidation of non functionalised olefins, viz. cis-stilbene, trans-3-nonene and trans-4-octene with iodosyl benzene as oxidant was demonstrated in the presence of catalytic amounts of chiral Mn(III) and Ru(III) dissymmetric Schiff base complexes. Good optical yields of epoxides were obtained for the catalyst 4 with the substrates trans-3-nonene and cis-stilbene.  相似文献   

10.
用半经验量子化学方法AM1和PM3对竹红菌乙素及其溴代物进行了对比计算,考察了溴代作用对竹红菌乙素分子性质的影响。两种方法所得结果均表明,溴代作用使分子的生成热、前线轨道能级及偶极矩等参数都有所降低,溴代作用也影响了竹红菌乙素分子内氢键的性质,并能使其对光的吸收产生红移。  相似文献   

11.
Published data on the properties of Müller's hydrocarbon are analyzed. The total energies of several hydrocarbon biradicals withp-phenylene bridges, including Thiele's, Chichibabin's, and Müller's hydrocarbons in the singlet and triplet states were calculated by the AM1 and PM3 semiempirical quantum-chemical methods. Contrary to popular opinion, our calculations revealed that the Müller's hydrocarbon molecule has a triplet rather than singlet ground state. The results obtained make it possible to explain the fact that quinoid color centers do not form in the course of reduction of poly(terphenylsulfophthalide). The calculated parameters of electronic spectra for singlet states of some related biradicals are reported.  相似文献   

12.
Cr(CO)n (n = 1-6) systems were studied for all possible spin states using density functional and high-level ab initio methods to provide a more complete theoretical understanding of the structure of species that may form during ligand dissociation of Cr(CO)6. We carried out geometry optimizations for each system and obtained vibrational frequencies, sequential bond dissociation energies (BDE), and total CO binding energies. We also compared the performance of various DFT functionals. Generally, the ground states of Cr(CO)6, Cr(CO)5, and Cr(CO)4, whose spin multiplicity is a singlet, are in good agreement with both previous theoretical results and currently available experimental data. Calculations on Cr(CO)3, Cr(CO)2, and CrCO provide new findings that the ground state of Cr(CO)3 might be a quintet with C2v symmetry instead of a singlet with C3v symmetry, and the ground state of Cr(CO)2 is not a linear quintet, as suggested by previous DFT calculations, but rather a linear septet. We also found that nonet states of Cr(CO)2 and CrCO display partial C-O bond breakage.  相似文献   

13.
Several of the readily available theoretical programs are evaluated as tools for modeling the structures of polycyclic aromatic hydrocarbons with five-membered rings (CPAHs). The experimentally determined bond lengths and angles are compared to calculated values. Experimental bond lengths are also compared to Pauling and Huckel molecular orbital (HMO) bond orders. Previously published experimental X-ray and neutron-diffraction structures of acenaphthene, acenaphthylene, fluoranthene, cyclopent[o,p,q,r]benz[c]phenanthrene, and corannulene are modeled by the programs MMX, AM1, MNDO, and PM3, and previously reported STO-3G and 6-31G * data are also evaluated. In general, the error differences between the experimental and calculated results for all of the semiempirical programs were small. However, PM3 performed slightly better than AM1 and MMX, while MNDO generated structures which exhibited the largest deviation from experiment. Although the standard deviations for all programs are shown to be of comparable magnitude, a particular bond length or bond angle in any given theoretical calculation can exhibit significant error from the experimental data. The scatter in the bond order data computed from Huckel molecular orbital theory and valence bond theory is contrary to results obtained with alternant systems. It appears that these approaches are less successful at modeling accurately the nonalternant hydrocarbon systems described in this paper.  相似文献   

14.
Density functional theory and CASSCF calculations have been used to determine equilibrium geometries and vibrational frequencies of metal-capped one-dimensional pi-conjugated complexes (H3P)Au(C[triple chemical bond]C)(n)(Ph) (n = 1-6), (H3P)Au(C[triple chemical bond]CC6H4)(C[triple chemical bond]CPh), and H3P--Au(C[triple chemical bond]CC6H4)C[triple chemical bond]CAu--PH3 in their ground states and selected low-lying pi(pi)* excited states. Vertical excitation energies for spin-allowed singlet-singlet and spin-forbidden singlet-triplet transitions determined by the time-dependent density functional theory show good agreement with available experimental observations. Calculations indicate that the lowest energy 3(pi(pi)*) excited state is unlikely populated by the direct electronic excitation, while the low-lying singlet and triplet states, slightly higher in energy than the lowest triplet state, are easily accessible by the excitation light used in experiments. A series of radiationless transitions among related excited states yield the lowest 3(pi(pi)*) state, which has enough long lifetimes to exhibit its photochemical reactivities.  相似文献   

15.
Theoretical investigation of excited states of C(3)   总被引:1,自引:0,他引:1  
In this work, we present ab initio calculations for the potential energy surfaces of C(3) in different electronic configurations, including the singlet ground state [X (1)Sigma(g) (+),((1)A(1))], the triplet ground state [a (3)Pi(u),((3)B(1), (3)A(1))], and some higher excited states. The geometries studied include triangular shapes with two identical bond lengths, but different bond angles between them. For the singlet and triplet ground states in the linear geometry, the total energies resulting from the mixed density functional--Hartree-Fock and quadratic configuration interaction methods reproduce the experimental values, i.e., the triplet occurs 2.1 eV above the singlet. In the geometry of an equilateral triangle, we find a low-lying triplet state with an energy of only 0.8 eV above the energy of the singlet in the linear configuration, so that the triangular geometry yields the lowest excited state of C(3). For the higher excited states up to about 8 eV above the ground state, we apply time-dependent density functional theory. Even though the systematic error produced by this approach is of the order of 0.4 eV, the results give different prospective to insight into the potential energy landscape for higher excitation energies.  相似文献   

16.
The electronic properties of three types of conducting polymers: trans-polyacetylene (proto-typical of systems with a degenerate ground state), polythiophene (as an example of compounds with a nondegenerate ground state), and polyemeraldine (which can be doped via protonation) are reviewed. The structural and electronic band structure properties of these systems are studied at various defect concentrations corresponding to undoped, lightly doped, and highly doped polymers. Geometry optimizations of oligomeric equivalents to the undoped and doped polymers are performed using the semi-empirical MNDO and AM1 methods. The electronic band structures are calculated using the VEH method. The interpretation of the optical absorption data is discussed in terms of interband transitions; for doped trans-polyacetylene including soliton defects and for doped polythiophene including bipolaron defects. For highly doped trans-polyacetylene and polythiophene as well as for protonated polyemeraldine, the electronic structure of a polaron lattice conformation is discussed and shown to be in agreement with existing optical and magnetic data on these polymers.  相似文献   

17.
Extensive testing of the SCC-DFTB method has been performed, permitting direct comparison to data available for NDDO-based semiempirical methods. For 34 diverse isomerizations of neutral molecules containing the elements C, H, N, and O, the mean absolute errors (MAE) for the enthalpy changes are 2.7, 3.2, 5.0, 5.1, and 7.2 kcal/mol from PDDG/PM3, B3LYP/6-31G(d), PM3, SCC-DFTB, and AM1, respectively. A more comprehensive test was then performed by computing heats of formation for 622 neutral, closed-shell H, C, N, and O-containing molecules; the MAE of 5.8 kcal/mol for SCC-DFTB is intermediate between AM1 (6.8 kcal/mol) and PM3 (4.4 kcal/mol) and significantly higher than for PDDG/PM3 (3.2 kcal/mol). Similarly, SCC-DFTB is found to be less accurate for heats of formation of ions and radicals; however, it is more accurate for conformational energetics and intermolecular interaction energies, though none of the methods perform well for hydrogen bonds with strengths under ca. 7 kcal/mol. SCC-DFTB and the NDDO methods all reproduce MP2/cc-pVTZ molecular geometries with average errors for bond lengths, bond angles, and dihedral angles of only ca. 0.01 A, 1.5 degrees , and 3 degrees . Testing was also carried out for sulfur containing molecules; SCC-DFTB currently yields much less accurate heats of formation in this case than the NDDO-based methods due to the over-stabilization of molecules containing an SO bond.  相似文献   

18.
The semiempirical quantum chemical methods MNDO, AM1 and PM3 were used to investigate the performance of the single excited configuration interaction (SCI) approximation for calculating low energy excitation energies of open-shell systems. Systematic calculations were done for eight radicals formed by reactions of H√, OH√ and eaq with various acrylates and N-isopropylacrylamide. The calculated electronic spectra show a reasonable correlation with experimental data for both neutral radicals and radical ions. The AM1 as well as the PM3 formalism can be successfully applied to calculate the low energy excited states of these types of open shell systems. The best correlation between experimental and calculated excitation energies was obtained using the PM3 method (correlation coefficient 0.96, overall average error 0.16 eV).  相似文献   

19.
In the reaction of benzil with lithium in the presence of 4,4′-dit-butylbiphenyl (DBB)trans-stilbene4 and dilithiobibenzyl5 are intermediates instead of the reported tetralithiobibenzyl2.  相似文献   

20.
AM 1 SCF -MO -CI computations find the bisected biphenyl dication to have nearly degenerate triplet and singlet states, with the lowest-energy state being a quininoid singlet planar dication. The bisected perchlorobiphenyl dication favors a triplet ground state by a small amount (0.4-1.9 kcal/mol), in qualitative agreement with recent experimental findings and with theoretical expectations that such an orthogonal open-shell pi-system should exhibit ferromagnetic exchange coupling. The higher oligomeric bisected para-linked phenylenes polycations do not show an appreciable computational preference for a high-spin multiplicity ground state either with or without perchlorine substitution. Chlorine substitution para to the 1,1′-linkage may lend a unique stabilization to the biphenyl system, which is not available in higher oligomeric analogs of poly(1,4-phenylene)s. The small magnitude of ferromagnetic exchange in these systems suggests that small geometric or substituent effects may confound experimental efforts to design polymeric ferromagnetic materials by this strategy. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号