首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here, we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a two-dimensional-difference-gel-electrophoresis (2D-DIGE) approach. Fibroblasts were exposed to noncytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass-spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photo-oxidative stress causatively involved in dermal photodamage through the impairment of lysosomal removal of lipofuscin.  相似文献   

2.
Two new stigmastane type of steroidal glycosides, vernoniacums A and B (1 and 2), with a △7,9(11) steroidal core were isolated from the roots of Vernonia cumingiana. Their structures were elucidated based on various spectroscopic techniques, including IR, HR-FAB-MS, and 1D and 2D NMR. Both compounds were evaluated for their cytotoxicity against HeLa and HCT-8 cells, and compound 1 showed mild activity against the tested cell lines with IC50 values of 15.8 and 35.7 pounds were evaluated for their cytotoxicity against HeLa and HCT-8 cells, and compound 1 showed mild activity against the tested cell lines with IC50 values of 15.8 and 35.7 μM, respectively.  相似文献   

3.
Abstract— The effects of stimulation of human peripheral blood monocytes in vitro with retinoids and carotenoids, and subsequent exposure to ultraviolet light of the B wavelength were measured. The compounds were applied to the monocytes in culture for 24 h, and the washed cells were then exposed to UVB light up to 220 J/m2. The compounds tested protected the monocyte from UVB induced damage to phagocytic activity. This protection may be due to the antioxidant or UVB energy-quenching properties of these compounds. Monocyte cytotoxicity against a melanoma cell line was stimulated by exposure to the retinoids or carotenoids, but a protective effect in vitro against UVB damage was not seen for this cell function.  相似文献   

4.
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB‐exposed SKH‐1 hairless mouse skin. Mice were exposed to 180 mJ cm?2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB‐exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX‐2, PGE2 as well as its receptors (EP1–EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL‐1β and IL‐6 in UVB‐exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB‐induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB‐induced cutaneous inflammation and DNA damage.  相似文献   

5.
《中国化学快报》2023,34(3):107586
Cell stress responses are associated with numerous diseases including diabetes, neurodegenerative diseases, and cancer. Several events occur under cell stress, in which, are protein expression and organelle-specific pH fluctuation. To understand the lysosomal pH variation under cell stress, a novel NIR ratiometric pH-responsive fluorescent probe (BLT) with lysosomes localization capability was developed. The quinoline ring of BLT combined with hydrogen ion which triggered the rearrangement of π electrons conjugated at low pH medium, meanwhile, the absorption and fluorescent spectra of BLT showed a red-shifts, which gived a ratiometric signal. Moreover, the probe BLT with a suitable pKa value has the potential to discern changes in lysosomal pH, either induced by heat stress or oxidative stress or acetaminophen-induced (APAP) injury stress. Importantly, this ratiometric fluorescent probe innovatively tracks pH changes in lysosome in APAP-induced liver injury in live cells, mice, and zebrafish. The probe BLT as a novel fluorescent probe possesses important value for exploring lysosomal-associated physiological varieties of drug-induced hepatotoxicity.  相似文献   

6.
One new sesquineolignan, obovatalignan A ( 1 ), and one new neolignan, obovatalignan B ( 2 ), were isolated from the Magnolia obovata fruits. Their chemical structure, including absolute configuration, was determined based on various spectroscopic methods, such as HR‐EI‐MS, 1D‐NMR (1H, 13C, DEPT), 2D‐NMR (gCOSY, gHSQC, gHMBC, NOESY), and CD spectroscopy. The compounds were evaluated for protective effects against glutamate‐induced oxidative stress in HT22‐immortalized hippocampal cells and inhibitory activity against NO production in LPS‐induced RAW 264.7 cells. Compounds 1 and 2 exhibited protective effects against glutamate‐induced oxidative stress with EC50 values of 18.1 ± 1.23 and 7.10 ± 0.78 μm , respectively, as well as inhibitory effects on NO production with IC50 values of > 30.0 and 8.22 ± 2.01 μm , respectively.  相似文献   

7.
Abstract— The effect of cold stress on skin damage caused by UVB irradiation was investigated both in vivo and in vitro. Ear skin of mice that had been exposed to cold stress at 0°C for 20 min and at 5°C for 24 h was exposed to UVB radiation. Sunburn cell production was less in mice exposed to the lower temperature. In addition, the effect of cold stress on the survival rate of UVB-irradiated rat keratinocytes was examined in a cytotoxicity test, with the results showing that keratinocytes exposed to cold stress of 0°C had a higher survival rate than control cells. To pursue a promising clue for explaining the result, we examined metallothionein (MT) production in rat keratinocytes that had been exposed to cold stress at 0°C. Microfluorometric quantification showed a positive correlation between the time course and the intensity of immunofluorescence for MT, indicating that the molecule is inducible by exposure to cold stress in our experimental system. These results suggest that epidermal cells that have been exposed to cold stress maintain a higher resistance to UV radiation than nonexposed controls in vivo and in vitro , and that MT with radical-scavenging activity might contribute, at least in part, to photoprotection against UVB-induced oxidative damage in mammalian skin.  相似文献   

8.
In a previous study, the lanthanum citrate complex ([LaCit2]3−) has been found to induce apoptosis in the human HeLa cervical cancer cell line. To clarify the mechanism, we carried out comparative proteomics analysis between treated and control cells. Differentially expressed proteins were separated electrophoretically and identified by MALDI-TOF/TOF tandem mass spectrometry. There were profound changes in 14 proteins related to mitochondrial function and oxidative stress, suggesting that mitochondrial dysfunction plays a key role in [LaCit2]3−-induced apoptosis. This was confirmed by a decrease in the mitochondrial transmembrane potential, and increases in cytochrome c release and reactive oxygen species generation in [LaCit2]3−-treated cells. Western blotting analyses show that [LaCit2]3−-induced apoptosis was accompanied by the activation of caspase-9 and the specific proteolytic cleavage of PARP, leading to an increase in the proapoptotic protein Bax and a decrease in the antiapoptotic protein Bcl-2. These results suggest that [LaCit2]3− induced the apoptosis of HeLa cells through oxidative stress mediated pathway involving MT participation.  相似文献   

9.
The effect of different ultraviolet radiation (UVR) treatments combining PAR (P), UVA (A) and UVB (B) on the molecular physiology of Dunaliella tertiolecta was studied during 6 days to assess the response to chronic UVR exposure. UVR reduced cell growth but did not cause cell death, as shown by the absence of SYTOX Green labeling and cellular morphology. However, caspase‐like enzymatic activities (CLs), (regarded as cell death proteases), were active even though the cells were not dying. Maximal quantum yield of fluorescence (Fv/Fm) and photosynthetic electron transport rate (ETR) dropped. Decreased nonphotochemical quenching (NPQ) paralleled a drop in xanthophyll cycle de‐epoxidation under UVB. Reactive oxygen species (ROS) and D1 protein accumulation were inversely correlated. PAB exhibited elevated ROS production at earlier times. Once ROS decayed, D1 protein recovered two‐fold compared with P and PA at later stages. Therefore, PsbA gene was still transcribed, suggesting ROS involvement in D1 recovery by its direct effect on mRNA‐translation. We add evidence of an UVB‐induced positive effect on the cells when P is present, providing photoprotection and resilience, by means of D1 repair. This allowed cells to survive. The photoprotective mechanisms described here (which are counterintuitive in principle) conform to an important ecophysiological response regarding light stress acclimation.  相似文献   

10.
Plant bioactive extracts represent a major resource for identifying drugs and adjuvant therapy for type 2 diabetes. To promote early screening of plants’ antidiabetic potential, we designed a four in vitro tests strategy to anticipate in vivo bioactivity. Two antidiabetic plants were studied: Ocimum gratissimum L. (Oc) leaf extract and Musanga cecropoides R. Br. ex Tedlie (Mu) stem bark extract. Chemical compositions were analyzed by LCMS and HPLC. Antidiabetic properties were measured based on (1) INS-1 cells for insulin secretion, (2) L6 myoblast cells for insulin sensitization (Glut-4 translocation), (3) L6 myoblast cells for protection against hydrogen peroxide (H2O2) oxidative stress (cell mortality), and (4) liver microsomial fraction for glucose-6-phosphastase activity (G6P). Oc extract increased insulin secretion and insulin sensitivity, whereas it decreased oxidative stress-induced cell mortality and G6P activity. Mu extract decreased insulin secretion and had no effect on insulin sensitivity or G6P activity, but it increased oxidative stress-induced cell mortality. Results were compared with NCRAE, an antidiabetic plant extract used as reference, previously characterized and reported with increased insulin secretion and insulin sensitivity, protection against oxidative stress, and decreased G6P activity. The proposed set of four in vitro tests combined with chemical analysis provided insight into the interest in rapid early screening of plant extract antidiabetic potential to anticipate pharmaco-toxicological in vivo effects.  相似文献   

11.
Currently, titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various applications including cosmetics, food additives and biomedicine. However, there are few reports available using TiO2 NPs to treat ocular diseases. Posterior capsular opacification (PCO) is the most frequent complication after cataract surgery, which is induced by the proliferation and migration of lens epithelial cells. Thus, inhibiting the proliferation of lens epithelial cells will efficiently reduce the occurrence of PCO. In this study, we investigated the effects of TiO2 NPs on HLE B‐3 cells with or without ultraviolet B (UVB) irradiation in vitro. We found that TiO2 NPs can inhibit HLE B‐3 cell growth, cause the elevation of intracellular [Ca2+], produce excessive reactive oxygen species (ROS), further reduce Ca2+‐ATPase activity and decrease the expression of plasma membrane calcium ATPase 1 (PMCA1), finally disrupt the intracellular calcium homeostasis and induce cell damage. Importantly, UVB irradiation can apparently enhance these effects on HLE B‐3 cells in the presence of TiO2 NPs. Taken together, the generation of excessive ROS and the disruption of intracellular calcium homeostasis may be both involved in TiO2 nanoparticle‐induced HLE B‐3 cell damage under UVB irradiation.  相似文献   

12.
New capped silica mesoporous nanoparticles for intracellular controlled cargo release within cathepsin B expressing cells are described. Nanometric mesoporous MCM‐41 supports loaded with safranin O ( S1‐P ) or doxorubicin ( S2‐P ) containing a molecular gate based on a cathepsin B target peptidic sequence were synthesized. Solids were designed to show “zero delivery” and to display cargo release in the presence of cathepsin B enzyme, which selectively hydrolyzed in vitro the capping peptide sequence. Controlled delivery in HeLa, MEFs WT, and MEFs lacking cathepsin B cell lines were also tested. Release of safranin O and doxorubicin in these cells took place when cathepsin B was active or present. Cells treated with S2‐P showed a fall in cell viability due to nanoparticles internalization, cathepsin B hydrolysis of the capping peptide, and cytotoxic agent delivery, proving the possible use of these nanodevices as new therapeutic tools for cancer treatment.  相似文献   

13.
The aim of the study is to evaluate oxidant–antioxidant balance as well as lysosomal and anti-protease activities in ovarian cancer since it has been emphasized that the crucial inducing factor of carcinogenesis may be reactive oxygen/nitrogen species or, more precisely, oxidative stress-induced inflammation. The study involved 15 women with ovarian cancer, aged 59.9 ± 7.8 years, and 9 healthy women aged 56.3 ± 4.3 years (controls). The study material was venous blood collected from fasting subjects. In erythrocytes, the activities of superoxide dismutase, glutathione peroxidase, and catalase, as well as concentrations of conjugated dienes (CDs) and thiobarbituric acid reactive substances (TBARS), were investigated. CD, TBARS, and vitamins A and E plasma concentrations were also determined. Moreover, total antioxidant capacity and concentrations of 4-hydroxynonenal adducts and 8-iso-prostaglandin F2α, as well as activities of acid phosphatase, arylsulfatase, cathepsin D, and α1-antitrypsin, were studied in serum. The vitamin E and 8-iso-prostaglandin F2α concentrations as well as arylsulfatase activity were lower in the women with cancer compared to the controls (p = 0.006, p = 0.03, p = 0.001, respectively). In contrast, cathepsin D activity was lower in the controls (p = 0.04). In the peripheral blood of the women with cancer, oxidant–antioxidant and lysosomal disturbances were observed.  相似文献   

14.
Ten half-sandwich iridium complexes containing lonidamine amide derivatives were synthesized and characterized. Unlike lonidamine, which acts on mitochondria, its iridium complexes successfully targeted lysosomes and induced lysosomal damage. Antiproliferation studies showed that most of the complexes have higher anticancer activity against A549 and HeLa cells than cisplatin. The antitumor activity of complex 6 is 2.69 times that of cisplatin against A549 cells. We also performed antitumor tests on ligands L1 and L5, and proved that they exhibit excellent antitumor activity only after binding to the metal center. The bovine serum albumin (BSA) binding test showed that the complexes had the ability to bind to BSA, and they interact with BSA by a static mechanism. The complexes can also cause changes in mitochondrial membrane potential and can produce active oxygen species better than active control. NADH/NAD+ transformation experiments were used to determine if the production of ROS was caused by the transformation of NADH/NAD+. We also explored the way that the complexes enter cells.  相似文献   

15.
A multimodal activity‐based probe for targeting acidic organelles was developed to measure subcellular native enzymatic activity in cells by fluorescence microscopy and mass spectrometry. A cathepsin‐reactive warhead conjugated to a weakly basic amine and a clickable alkyne, for subsequent appendage of a fluorophore or biotin reporter tag, accumulated in lysosomes as observed by structured illumination microscopy (SIM) in J774 mouse macrophage cells. Analysis of in vivo labeled J774 cells by mass spectrometry showed that the probe was very selective for cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation‐induced autophagy, a catabolic pathway involving lysosomes, showed a large increase in the number of tagged proteins and an increase in cathepsin activity. The organelle‐targeting of activity‐based probes holds great promise for the characterization of enzyme activities in the myriad diseases linked to specific subcellular locations, particularly the lysosome.  相似文献   

16.
Nano-Fe particle uptake was experimentally examined in vitro using excised gills and blood cells of the edible blue mussel Mytilus sp. Whole gills were exposed to both Fe2O3 nanoparticles and a solution of the hydrated FeCl3 salt, for up to 12 h, and blood cells for 30 min. Equimolar Fe+3 in the nano- and the soluble form was estimated under the assumption of dense spherical particles accommodating the same number of Fe+3 as in the dissolved salt solution, namely: 1,000 μg L−1 Fe2O3 equivalent to 100 μg L−1 FeCl3·6H2O. Putative toxic impact of nano-Fe in gill epithelia and blood cells was assessed by an array of techniques including light- and electron microscopy, biomarkers for oxidative stress (lipid peroxidation levels), neurotoxic effects (acetylcholinesterase activity) and cytotoxicity (neutral red retention). Total and filtered fractions (20 and 200 nm, respectively) of Fe were analysed by ICP-OES. Our results provide evidence for the following: (1) much of both the soluble (95%) and the nano-Fe (90%) were removed from the water column within 12 h; (2) dissolved- and nano-Fe seemed to follow different routes of uptake within the gill epithelium; (3) both nano-Fe and soluble FeCl3 caused similar impairment of lysosomal stability in circulating blood cells; (4) lipid peroxidation in gills exposed to the two distinct forms of Fe was increased, while acetylcholinesterase activity was unaffected. In these short-term in vitro studies, there appears to be little difference in toxic response between exposure to the Fe salt and the nano-Fe indicating that, in this case, the nanoparticles do not invoke special properties affecting biological function in gills. However, with the use of nano-Fe as a food additive, clearly longer-term in vivo studies are warranted.  相似文献   

17.
Abstract

Two new cucurbitane-type triterpenoid glucosides, 3β,11α-dihydroxycucurbita-5,24(E)-diene-3,26-glucosides (1) and 3β,11α-dihydroxycucurbita-5,24(Z)-diene-3,27-glucosides were isolated from the tubers of Hemsleya amabilis. Their structures were elucidated by various spectroscopic techniques including IR, HRESIMS, 1D and 2D NMR. The two compounds were evaluated for their anti-tumor activity against HeLa and HepG-2 cell lines, and both displayed moderate anti-tumor activity towards HeLa cell lines with IC50 values of 9.8 and 15.7?μM, respectively.  相似文献   

18.
Cathepsin D, a lysosomal aspartic protease, is of potential interest as a target for drug design due to its implication in breast and ovarian cancer. The article reports a low molecular weight cathepsin D inhibitor from Streptomyces sp. MBR04. The Mr of the inhibitor was 1,078 Da as determined by MALDI-TOF, and the amino acid analysis showed the presence of Asp, Asp, Gly, Ala, Lys, Leu, Tyr, Trp residues. The steady-state kinetic interactions revealed reversible, competitive, slow-tight-binding nature of the inhibitor with an IC50 and K i values of 3.2 and 2.5 nM, respectively. The binding of the inhibitor with the enzyme and the subsequent conformational changes were monitored by exploiting the intrinsic fluorescence of the surface exposed Trp-54 residue. Based on the fluorescence and circular dichroism studies, we demonstrate that the inhibitor binds to the active site of cathepsin D and causes inactivation. All these kinetic, thermodynamic, and quenching studies suggest that the newly isolated peptidic inhibitor could be a potential scaffold to study and can be used to develop new potent therapeutic lead molecule for the development of drugs. The inhibitor will be significant as a potential lead molecule to target cathepsin D.  相似文献   

19.
The biological and optical importance of the o-aminoaldehyde family of ligands inspired us to evaluate the coordination properties and biological activities of 2-aminonicotinaldehyde (ANA). Here, we report the synthesis, characterization, biological screening and molecular docking studies of ANA and its metal complexes of Ni(II), Pd(II), Co(II) and Cu(II) using various analytical and spectroscopic techniques. The single crystal X-ray diffraction studies of ANA explain the solid-state assembly and an interesting supramolecular herring bone stacking pattern by classical N–H···O/N intra/inter molecular and non-classical C–H···O/N intermolecular H-bonding. ANA and its metal complexes were screened for in vitro anticancer, antimicrobial and anti-oxidant activities. Anticancer activity was tested against HeLa, MCF-7 and HEK293 human cancer cell lines. The [Ni(ANA)2Cl2] complex showed good activity against HeLa and MCF-7, the [Pd(ANA)2Cl2] and [Cu(ANA)2Cl2] complexes against HeLa, and the [Co(ANA)2Cl2] complex against MCF-7. In antimicrobial screening, the [Co(ANA)2Cl2] and [Cu(ANA)2Cl2] complexes were proved to be potent antibacterial and antifungal agents. The anti-oxidant activity of these complexes was investigated through DPPH radical assay, and it was found that all the complexes have good radical scavenging capability. Molecular docking studies were also carried for all the metal complexes against EGFR as a target protein by using Autodock, and the results strongly correlated with the anticancer activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号