首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The velocity-stress finite-difference method is adopted to simulate the elastic wave propa-gation in azimuthal anisotropic media.The difference grids are completely staggered in the numerical im-plementation.To reduce the computational work,the absorbin8 boundary conditions for anisotropic mediaare introduced first and the corner points are specially treated.Examples show that more accurate resultscan be obtained from the modeling algorithm,which cost much less computational time than the conven-tional methods.Therefore,the algorithm has broad application prospects in engineering.  相似文献   

2.
通过运用速度-应力有限差分法研究方位各向异性介质中的弹性波传播问题,在计算实施过程中,使用了交错网格技术,为了减少计算量,首次引入了适用于各向异性体的吸收边界条件,并对角点处的吸收做特殊的处理,算例表明,该算法不仅具有较高的精度;与传统方法相比,计算时间也大为缩短,从而可望在实际中获得良好的应用前景。  相似文献   

3.
In the present study, a high-order compact finite-difference lattice Boltzmann method is applied for accurately computing 3-D incompressible flows in the generalized curvilinear coordinates to handle practical and realistic geometries with curved boundaries and nonuniform grids. The incompressible form of the 3-D nineteen discrete velocity lattice Boltzmann method is transformed into the generalized curvilinear coordinates. Herein, a fourth-order compact finite-difference scheme and a fourth-order Runge-Kutta scheme are used for the discretization of the spatial derivatives and the temporal term, respectively, in the resulting 3-D nineteen discrete velocity lattice Boltzmann equation to provide an accurate 3-D incompressible flow solver. A high-order spectral-type low-pass compact filtering technique is applied to have a stable solution. All boundary conditions are implemented based on the solution of the governing equations in the 3-D generalized curvilinear coordinates. Numerical solutions of different 3-D benchmark and practical incompressible flow problems are performed to demonstrate the accuracy and performance of the solution methodology presented. Herein, the 2-D cylindrical Couette flow, the decay of a 3-D double shear wave, the cubic lid-driven cavity flow with nonuniform grids, the flow through a square duct with 90° bend and the flow past a sphere at different flow conditions are considered for validating the present computations. Numerical results obtained show the accuracy and robustness of the present solution methodology based on the implementation of the high-order compact finite-difference lattice Boltzman method in the generalized curvilinear coordinates for solving 3-D incompressible flows over practical and realistic geometries.  相似文献   

4.
An adaptive finite element method is developed and applied to study the ozone decomposition laminar flame. The method uses a semidiscrete, linear Galerkin approximation in which the size of the elements is controlled by an integral which minimizes the changes in mesh spacing. The sizes and locations of the elements are controlled by the location and magnitude of the largest temperature gradient. The numerical results obtained with this adaptive finite element method are compared with those obtained using fixed-node finite-difference schemes and an adaptive finite-difference method. It is shown that the adaptive finite element method developed here using 36 elements can yield as accurate flame speeds as fourth-order accurate, fixed-node, finite-difference methods when 272 collocation points are employed in the calculations.  相似文献   

5.
When numerically calculating fluid flows around complex geometries using the high-order finite-difference method on structured grids, grid singularities are frequently observed, even if the grids are carefully generated. In multi-block computations with the generalised characteristic interface conditions (GCIC), decomposed subdomains (blocks) do not overlap but are connected by the inviscid characteristic relations. In the original theory of the GCIC, discontinuity of the metrics on the interface can be accurately treated; however, discontinuity of the grid lines on the interface is not allowed. This article proposes a theoretical extension to the GCIC by incorporating high-order interpolation methods; this extension is called GCIC with interpolation (GCIC + I). The basic concept and solution procedure of the multi-block computation with the GCIC + I are presented in detail, and two benchmark tests are conducted to validate the proposed theory.  相似文献   

6.
This paper presents a finite-difference (FD) method with spatially non-rectangular irregular grids to simulate the elastic wave propagation. Staggered irregular grid finite difference operators with a second-order time and spatial accuracy are used to approximate the velocity-stress elastic wave equations. This method is very simple and the cost of computing time is not much. Complicated geometries like curved thin layers, cased borehole and nonplanar interfaces may be treated with nonrectangular irregular grids in a more flexible way. Unlike the multi-grid scheme, this method requires no interpolation between the fine and coarse grids and all grids are computed at the same spatial iteration. Compared with the rectangular irregular grid FD, the spurious diffractions from “staircase” interfaces can easily be eliminated without using finer grids. Dispersion and stability conditions of the proposed method can be established in a similar form as for the rectangular irregular grid scheme. The Higdon‘s absorbing boundary condition is adopted to eliminate boundary reflections. Numerical simulations show that this method has satisfactory stability and accuracy in simulating wave propagation near rough solid-fluid interfaces. The computation costs are less than those using a regular grid and rectangular grid FD method.  相似文献   

7.
The near-wall regions of high Reynolds numbers turbulent flows must be modelled to treat many practical engineering and aeronautical applications. In this review we examine results from simulations of both attached and separated flows on coarse grids in which the near-wall regions are not resolved and are instead represented by approximate wall boundary conditions. The simulations use the dynamic Smagorinsky subgrid-scale model and a second-order finite-difference method. Typical results are found to be mixed, with acceptable results found in many cases in the core of the flow far from the walls, provided there is adequate numerical resolution, but with poorer results generally found near the wall. Deficiencies in this approach are caused in part by both inaccuracies in subgrid-scale modelling and numerical errors in the low-order finite-difference method on coarse near-wall grids, which should be taken into account when constructing models and performing large-eddy simulation on coarse grids. A promising new method for developing wall models from optimal control theory is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The accuracy of four industrial shock hydrodynamics codes for blast environments in baffled systems is evaluated based on the shadowgraph data of Reichenbach and Kuhl (1992,3). Both problems involve a planar shock passing through a baffled channel. The numerical methods employed in these codes are representative of two classes, namely, the set of high-resolution schemes advanced in the 1980's, and the classical finite-difference schemes from the late 1960's. The four codes are: (1) the AMR code based on the higher-order Godunov scheme with adaptive grids, (2) the FEM-FCT code based on the flux-corrected transport scheme with unstructured grids, (3) and (4) the finite-difference based HULL and SHARC codes with fixed grids. From the comparisons of these calculations it is concluded that the high-resolution schemes: (1) calculate sharper shocks and sharper density profiles across vortices, (2) predict shear layer rollup forming coherent structures in the spiral vortices immediately downstream of every baffle, and (3) predict development of inviscid instabilities from these shear layers that, upon interaction with the reverberating shocks in the system, quickly become ‘turbulent’. The finite-difference codes predict essentially laminar behavior for the shear layers. Comparisons with shadowgraph data suggest that both classes of codes are able to predict shock reflections and diffractions in the baffled systems. The high-resolution codes give better agreement in the spiral vortices and the shear layers. As expected, turbulent flow features involving highly dissipative flow fields are not predicted by the high-resolution codes. Received March 5, 1995 / Accepted June 20, 1995  相似文献   

10.
Algorithms are considered for the solution of nonstationary electronics problems which reduce to calculation of electromagnetic fields and numerical integration of the equations of motion of charged particles. It is assumed that at each moment of time the potential distribution is described by the Poisson equation. Field calculation is performed by finite-difference methods. For simulation of the space charge a modified “large particle” method is described. The KSI-BÉSM compilation system is discussed as a means of automation of the problem-solving process. Examples of problem solutions are offered.  相似文献   

11.
The Karman-Howarth closed equation is used to describe the behavior of homogeneous isotropic turbulence. A numerical solution is obtained by the collocation-grid and finite-difference methods using moving grids. The predicted results are compared with experimental data on the decay of fully developed and weak turbulence. The numerical realization of the Loitsiansky-MilHonshtchikov asymptotic solution has been made.  相似文献   

12.
In this paper, a multigrid algorithm is developed for the third‐order accurate solution of Cauchy–Riemann equations discretized in the cell‐vertex finite‐volume fashion: the solution values stored at vertices and the residuals defined on triangular elements. On triangular grids, this results in a highly overdetermined problem, and therefore we consider its solution that minimizes the residuals in the least‐squares norm. The standard second‐order least‐squares scheme is extended to third‐order by adding a high‐order correction term in the residual. The resulting high‐order method is shown to give sufficiently accurate solutions on relatively coarse grids. Combined with a multigrid technique, the method then becomes a highly accurate and efficient solver. We present some results to demonstrate its accuracy and efficiency, including both structured and unstructured triangular grids. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
An adaptive-grid finite-difference method is applied to a model for non-isothermal, coupled flow and transport of brine in porous media. In the vicinity of rock salt formations the salt concentration in the fluid becomes large, giving rise to disparate scales in the salt concentrations profiles. A typical situation one encounters is that of a sharp freshwater-saltwater interface that moves in time. In such situations adaptive-grid methods are more effective than standard fixed-grid methods, since they refine the space grid locally and, hence, provide for substantial reduction in the number of grid points, memory use and CPU time. The adaptive-grid method of this paper is a static, local uniform grid refinement method. Its main feature is that it integrates on nested sequences of locally uniformly refined Cartesian space grids, which are automatically adjusted in time to follow rapid spatial transitions. Variable time steps are used to cope with rapid temporal transitions, including a fast march to possible steady-state solutions. For time stepping, the implicit, second-order BDF scheme is used. Two specific example problems are numerically illustrated. The main physical properties involved here are advection and dispersion and in case of dominant advection sharp freshwater-saltwater interfaces arise.  相似文献   

14.
The finite‐volume methods normally utilize either simple or complicated mathematical expressions to interpolate the fluxes at the cell faces of their unstructured volumes. Alternatively, we benefit from the advantages of both finite‐volume and finite‐element methods and estimate the advection terms on the cell faces using an inclusive pressure‐weighted upwinding scheme extended on unstructured grids. The present pressure‐based method treats the steady and unsteady flows on a collocated grid arrangement. However, to avoid a non‐physical spurious pressure field pattern, two mass flux per volume expressions are derived at the cell interfaces. The dual advantages of using an unstructured‐based discretization and a pressure‐weighted upwinding scheme result in obtaining high accurate solutions with noticeable progress in the performance of the primitive method extended on the structured grids. The accuracy and performance of the extended formulations are demonstrated by solving different standard and benchmark problems. The results show that there are excellent agreements with both benchmark and analytical solutions as well as experimental data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.  相似文献   

16.
It is well known that exact projection methods (EPM) on non‐staggered grids suffer for the presence of non‐solenoidal spurious modes. Hence, a formulation for simulating time‐dependent incompressible flows while allowing the discrete continuity equation to be satisfied up to machine‐accuracy, by using a Finite Volume‐based second‐order accurate projection method on non‐staggered and non‐uniform 3D grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by first solving an elliptic equation on a compact stencil that is by performing a standard approximate projection method (APM). In such a way, three sets of divergence‐free normal‐to‐face velocities can be computed. Then, a second elliptic equation for a scalar field is derived by prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated in details and stability and accuracy of the method are addressed. The resulting numerical scheme is then applied to laminar buoyancy‐driven flows and is proved to be stable and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A new 3 D finite- difference ( FD ) method of spatially asymmetric staggered grids was presented to simulate elastic wave propagation in topographic structures. The method approximated the first-order elastic wave equations by irregular grids finite difference operator with second-order time precise and fourth-order spatial precise. Additional introduced finite difference formula solved the asymmetric problem arisen in non-uniform staggered grid scheme, The method had no interpolation between the fine and coarse grids. All grids were computed at the same spatial iteration. Complicated geometrical structures like rough submarine interface, fault and nonplanar interfaces were treated with fine irregular grids. Theoretical analysis and numerical simulations show that this method saves considerable memory and computing time, at the same time, has satisfactory stability and accuracy.  相似文献   

18.
Ackerer  Ph.  Younes  A.  Mose  R. 《Transport in Porous Media》1999,35(3):345-373
A new numerical model for the resolution of density coupled flow and transport in porous media is presented. The model is based on the mixed hybrid finite elements (MHFE) and discontinuous finite elements (DFE) methods. MHFE is used to solve the flow equation and the dispersive part of the transport equation. This method is more accurate in the calculation of velocities and ensures continuity of fluxes from one element to the adjacent one. DFE is used to solve the convective part of the transport equation. Combined with a slope limiting procedure, it avoids numerical instabilities and creates a very limited numerical dispersion, even for high grid Peclet number.Flow and transport equations are coupled by a standard iterative scheme. Residual based criterion is used to stop the iterations. Simulations of an unstable equilibrium show the effects of the criteria used to stop the iterations and the stopping criterion in the solver. The effects are more important for finer grids than for coarser grids.The numerical model is verified by the simulation of standard benchmarks: the Henry and the Elder test cases. A good agreement is found between the revised semianalytical Henry solution and the numerical solution. The Elder test case was also studied. The simulations were similar to those presented in previous works but with significantly less unknowns (i.e. coarser grids). These results show the efficiency of the used numerical schemes.  相似文献   

19.
Dynamic fluid–solid interactions are widely found in chemical engineering, such as in particle-laden flows, which usually contain complex moving boundaries. The immersed boundary method (IBM) is a convenient approach to handle fluid–solid interactions with complex geometries. In this work, Uhlmann's direct-forcing IBM is improved and implemented on a supercomputer with CPU–GPU hybrid architecture. The direct-forcing IBM is modified as follows: the Poisson's equation for pressure is solved before evaluation of the body force, and the force is only distributed to the Cartesian grids inside the immersed boundary. A multidirect forcing scheme is used to evaluate the body force. These modifications result in a divergence-free flow field in the fluid domain and the no-slip boundary condition at the immersed boundary simultaneously. This method is implemented in an explicit finite-difference fractional-step scheme, and validated by 2D simulations of lid-driven cavity flow, Couette flow between two concentric cylinders and flow over a circular cylinder. Finally, the method is used to simulate the sedimentation of two circular particles in a channel. The results agree very well with previous experimental and numerical data, and are more accurate than the conventional direct-forcing method, especially in the vicinity of a moving boundary.  相似文献   

20.
Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach i.e. ultra hi-fi (UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (defined as waves having wavelengths that are shorter than a grid cell). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号