首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用相衬显微术、电子吸收像、IR光谱、AES和ESCA谱研究了硅片经CW CO2激光退火后的一些特征,其中着重分析氧的深度沾污问题。电子吸收像表明:我们的CW CO2激光退火条件下,其效果并不很均匀。实验还证明:空气中的CW CO2激光退火可以减少样品表面的碳沾污,但产生氧沾污。氧的沾污分两部分:表面是SiOx,其下是自由氧原子,厚度不大于250?。 关键词:  相似文献   

2.
第l期激光等离子体中子发射研究………………………………………潘成明张树干朱大庆(1)CW CO:激光退火在硅中产生的氧沾污………………………………………许振嘉陈维德(9)双光子光学双稳态的研究………………………………………:……………………~朱诗尧(16)非均匀等离子体湍流的重正化准线性理论……………………………………………秦运文(25)有两个线性转折点时的绝对参量不稳定性…周玉美张淳沅沈解伍蔡诗东陈骝(37)用共焦谐振腔法测量等离子体的电子迥旋辐射……………………………王兆申 汪亚民(47)”N原子核共振反应及Pd中的氢剖…  相似文献   

3.
本文基于半导体材料硅(Si)中电子、空穴的费米统计分布,计算了Si对CO_2 激光的透射率随温度的变化,并用实验理论作了验证.说明在强CO_2激光辐照下,Si对CO_2激光能量有着强烈的吸收,其机理主要是自由载流子吸收.  相似文献   

4.
本文测量了砷离子(As~+)注入的Si在连续CO_2激光辐照下光的椭圆偏振参数、反射率、表面薄层电阻率随时间的变化。从(?)、△、R、ρ的变化看出Si注入层的激光退火是在一定的时间、温度条件下迅速完成的。  相似文献   

5.
紫外脉冲激光退火发次对KDP晶体抗损伤性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
郭德成  蒋晓东  黄进  向霞  王凤蕊  刘红婕  周信达  祖小涛 《物理学报》2013,62(14):147803-147803
在R-on-1的辐照模式下, 利用355 nm的紫外脉冲激光以低于KH2PO4 (KDP)晶体零概率损伤阈值的通量对其进行不同发次的全域扫描, 目的是为了研究KDP晶体在接受不同发次的紫外激光辐照后其抗损伤能力的变化规律及机制. 辐照后的1-on-1损伤测试表明, 适当的紫外激光退火可以有效地提升KDP晶体的抗损伤能力, 提升的幅度与其接受激光扫描的次数有关. 通过荧光和紫外吸收检测深入探讨了晶体内缺陷对激光退火的影响, 结果表明: 紫外脉冲激光辐照后KDP 晶体内的氧空位电子缺陷的存在与否是导致其抗损伤能力变化的主要原因; 通过拉曼和红外光谱的测量表明, 辐照后KDP 晶体内的PO4, P–OH和P=O基团的极化变形也导致了其抗损伤能力的改变. 关键词: 激光退火 荧光 拉曼 红外  相似文献   

6.
摘要 金属氧化物气敏传感材料一直是当今的热门研究课题,锐钛矿相金属氧化物XO2(X=Ti,Sn,Zr,Ir)是具有传感特性的常见材料。光学气敏效应是指气体分子吸附在气敏传感材料上,与表面氧空位发生氧化还原反应,由于光学性质发生改变而检测出气体的成分和浓度,因此,氧化还原反应的强弱是反应传感性能的核心原因。本文采用密度泛函理论(DFT)体系下广义梯度近似(GGA)第一性原理平面波超软赝势方法,分析和计算了含氧空位的锐钛矿相XO2(X=Ti,Sn,Zr,Ir)表面特性。通过以NH3为目标分子,研究分子表面吸附引起的氧化还原反应的机理,分析不相同的氧化物表面的几何结构、吸附能、态密度、差分电荷密度、电荷布居、电荷转移、光学性质等。研究发现:目标分子稳定吸附在氧化物表面后改变材料光学性质。SnO2表面对分子的吸附能最大,IrO2表面与分子的吸附距离最小。NH3分子与表面间存在电荷转移,其转移电子数目大小为:IrO2>TiO2>ZrO2>SnO2,氧化物表面氧化性的大小为:IrO2氧空位>TiO2氧空位>ZrO2氧空位>SnO2氧空位;比较吸收谱和反射谱发生变化最为明显的是TiO2表面。结论,在可见光范围内,波长在400~530nm时,SnO2表面光学气敏传感效应更好。而在530~760nm范围TiO2表面光学气敏传感效应更好。  相似文献   

7.
对软X射线谱仪和透射光栅谱仪的测量结果进行了对比。它们的回推谱形大致符合,只是透射光栅谱仪的复原谱的N带相对于O带太小。其原因可能是X射线CCD受到靶室油沾污,在表面形成了碳膜,对N带吸收较多。经过对透射光栅谱进行吸收补偿后,两种谱仪的复原谱基本一致。  相似文献   

8.
光学气敏传感器是当今研究领域的一个热门方向.文章采用密度泛函理论(DFT)体系下广义梯度近似(GGA)第一性原理平面波超软赝势方法,分析和计算了光学气敏材料岩盐型MgO、金红石型SnO_2和锐钛矿型TiO_2表面氧空位的特性.以CO作为吸附分子进行微观机理研究,研究不同氧化物表面吸附气体分子的机理.对氧化物表面的几何结构、吸附能、态密度、差分电荷密度、电荷布居、电荷转移、光学性质等进行分析.研究发现:含有氧空位缺陷的MgO(001)、SnO_2(110)和TiO_2(101)能稳定的吸附CO分子,吸附后造成了材料光学性质的变化,可作为光学气敏传感材料.分析发现:氧空位氧化能力的大小是光学性质改变的核心原因.表面吸附CO分子后,发现SnO_2(110)表面对分子的吸附能最大,分子与表面的吸附距离最短.通过差分电荷密度和电荷布居数发现,表面与CO分子间存在电荷转移,其转移电子数目大小为:SnO_2(110)TiO_2(101)MgO(001),由此得出不同氧化物表面氧化性的大小为:SnO_2(110)TiO_2(101)MgO(001);通过对比吸收谱和反射谱发现:吸附气体分子后SnO_2(110)表面的光学性质变化最为明显,是一种较好的光学气敏传感材料.  相似文献   

9.
陆雪标  陈持平 《光学学报》1990,10(3):34-238
本文通过理论计算和实验测量了CW CO_2激光辐照下石英基片的表面温度分布及其上升过程,并用此结果分析了CW CO_2激光热解W(CO)_6在石英片上沉积大面积钨膜的实验.  相似文献   

10.
邵君宜  林兆祥  刘林美  龚威 《物理学报》2017,66(10):104206-104206
应用自行构建的恒温差分吸收光谱探测系统,在230—320 K的温度范围内,精确探测1.572μm附近CO_2吸收谱线的变化,获得了不同温度和压强下CO_2气体的吸收截面、自增宽系数、空气增宽系数,这些参数补充和完善了现有的数据库.定量分析了温度、压强对谱线的影响,建立了光学厚度和吸收截面的数值计算模型,并已经用于我国的CO_2激光雷达,为其高精度数据反演奠定了技术基础.这些工作能够提高工作在该波段的差分吸收CO_2探测激光雷达的反演精度.  相似文献   

11.
苏锐  张红  姜胜利  陈军  韩伟 《物理学报》2016,65(2):27801-027801
本文使用密度泛函理论研究了熔石英中peroxy linkage(POL)缺陷和中性氧空位(NOV)缺陷的几何结构,电子结构以及光学性质.采用自洽的准粒子GW计算结合求解Bathe-Salpeter方程的多体理论,研究了缺陷引起的电子结构和光学吸收谱的变化.首先研究了无缺陷非晶结构的电子结构与吸收谱,得到的结果与实验值非常接近.对POL的计算表明,其在基态下的局部结构与过氧化氢分子类似.采用多体理论计算得到的吸收谱表明其最低吸收峰位于6.3 eV处.这一结果不支持实验认为的位于3.8 eV处的吸收峰是由POL缺陷导致的说法.对于NOV缺陷,计算表明其基态的Si—Si键长为2.51?而三重态下的值则为3.56?.相应的GW+BSE计算表明中性氧空位缺陷导致了位于7.4 eV处的吸收峰,与实验测量结果一致.  相似文献   

12.
王鹿霞  樊飞 《物理学报》2009,58(2):1326-1331
以二奈嵌苯分子吸附在TiO2表面所组成的异质结构为例,介绍了在飞秒激光作用下由染料分子和半导体组成的异质结构中从分子基态到半导体导带的超快电子传输过程,在理论上分析了分子内部传输和直接电子传输过程对线性吸收谱的贡献.与分子内部传输过程项相比较分析了电子的超快直接传输在不同的分子及半导体结构下对线性吸收谱的影响. 关键词: 飞秒激光 线性吸收谱 超快电子转移  相似文献   

13.
NH_3是大气二次细颗粒物的主要前驱物之一,NH_3浓度的准确测量对于大气环境监测和保护具有重要意义。近红外波段激光器的成本较低,但采用其测量NH_3时,普遍存在受环境中H_2O、CO_2气体干扰以及吸收光程较短等问题。为克服环境中H_2O、CO_2干扰气体的影响,筛选出中心波数为6521.97 cm~(-1)的吸收谱线,利用该谱线对大气环境中痕量NH_3的浓度进行测量。该谱线不受环境中CO_2吸收的影响,且在低压条件下与H_2O吸收谱线的重叠范围较小,通过多峰拟合可以准确提取出NH_3的光谱吸收率。基于分布反馈式激光器搭建了一套腔衰荡吸收光谱测量装置,在该装置中,衰荡光腔由一对反射率高达99.996%的高反镜构成,空腔衰荡时间约96μs,有效吸收光程可达1.6×10~4 m。利用该装置对大气环境中痕量NH_3的浓度进行测量,结果表明:该测量系统的探测灵敏度可以达到3.9×10~(-10)。  相似文献   

14.
在水溶剂中,采用含时密度泛函理论(TD-DFT)和Multiwfn波函数分析软件中空穴-电子分析探究小檗碱及其衍生物紫外光谱电子激发特征,进而讨论构效关系。理论紫外光谱与实验光谱吻合较好,其中243 nm和416 nm处的两个吸收峰可认为是与小檗碱及其衍生物药性相关的特征吸收峰。小檗碱9-O处3-溴代丙基的取代不仅未引起吸收峰位置的变化,且提高O供电子能力,增强吸收峰强度;而2-氯代乙酰基、2-溴代乙酰基、环丙沙星的取代使9-O处氧对小檗碱母体无供电子能力,导致吸收峰红移。a、b环及9-O处氧是小檗碱及其衍生物激发过程中供电子体,c环是电子受体,尤其N处。有望对今后小檗碱衍生物合成设计提供一定的理论指导。  相似文献   

15.
碳酸钠是一种颇具潜力的燃煤烟气CO_2固体吸收剂,其脱碳包括物理吸附和化学吸收过程,目前对其脱碳过程微观机理的研究比较缺乏。本文以碳酸钠物理吸附CO2为切入点,利用密度泛函理论(DFT)讨论了H_2O和CO_2在Na_2CO_3(001)表面的单独吸附及共吸附机制。计算采用周期性平板模型和GGA-PBE泛函,计算结果表明,Na_2CO_3(001)面具有最低的表面能;Na_2CO_3(001)面单独吸附H_2O的过程属于弱化学吸附,单独吸附CO_2的过程属于物理吸附;H_2O和CO_2在Na_2CO_3(001)面的共吸附无明显竞争作用,与在K_2CO_3(001)表面的吸附情况不同。本文研究结果将为碳酸钠化学吸收CO_2微观机理的后续研究提供理论依据。  相似文献   

16.
本文利用平面火焰携带流反应器研究了DT烟煤在富氧燃烧条件下的燃烧实验。采用灰示踪法分析煤焦的燃尽和元素释放特性,并采用等密度模型计算了基于氧化反应C+0.5O_2→CO的表观反应动力学参数。研究结果表明;煤粉在富氧燃烧条件下的燃尽慢于空气燃烧;富氧燃烧条件下,煤焦与CO_2的气化反应会导致煤焦表面对O的化学吸附,进而导致氧元素释放速率减慢;高氧浓度条件下,高浓度CO_2对煤焦燃尽的抑制作用大于CO_2气化反应对煤焦燃尽的促进作用,降低环境氧浓度可以逐步提高CO_2气化反应对煤焦燃尽的贡献。  相似文献   

17.
王凯  张文华  刘凌云  徐法强 《物理学报》2016,65(8):88101-088101
VO2表面氧缺陷的存在对VO2材料具有显著的电子掺杂效应, 极大地影响材料的本征电子结构和相变性质. 通过2, 3, 5, 6-四氟-7, 7', 8, 8'-四氰二甲基对苯醌(F4TCNQ)分子表面吸附反应, 可以有效消除表面氧缺陷及其电子掺杂效应. 利用同步辐射光电子能谱和X射线吸收谱原位研究了修复过程中电子结构的变化以及界面的化学反应, 发现这种方式使得VO2薄膜样品氩刻后得到的V3+失去电子成功地被氧化成原先的V4+, 同时F4TCNQ分子吸附引起电子由衬底向分子层转移, 界面形成带负电荷的分子离子物种. 受电化学性质的制约, F4TCNQ分子吸附反应修复氧缺陷较氧气氛退火更安全有效, 不会引起表面过度氧化形成V2O5.  相似文献   

18.
用X-射线电子能谱仪对TiO_2光学薄膜的组分和价态进行分析.为了避免静电效应引起的ESCA谱峰移动,需要将TiO_2薄膜淀积在Si基体上.可以看出,不论是有吸收的还是透明的TiO_2膜,其主要成分都是TiO_2,在有吸收的TiO_2薄膜中,部分TiO_2已分解为钛的低价氧化物.TiO_2膜表面含有大量的C,可能引起较大的表面吸收.  相似文献   

19.
采用第一性原理计算方法研究了H_2S分子在二维单层Ti_2CO_2表面上的吸附以及外加应变和电场对其性质的调制,发现该吸附为物理吸附,其吸附强度几乎不受外加拉伸应变的影响,而外加电场使H_2S分子的吸附增强.同时,通过单层Ti_2CO_2表面不同结构(如水分子修饰、官能团掺杂、氧官能团空位)对H_2S分子吸附性质影响的研究表明:(1)表面吸附的水分子促进H_2S分子的吸附,其吸附强度随H_2O分子数增多而增强;(2)官能团OH掺杂浓度低于0.22 ML时,促进H_2S分子的吸附,而较高浓度OH掺杂使H_2S分子吸附减弱;官能团F掺杂对H_2S分子吸附强度几乎没有影响;(3)含氧空位的Ti_2CO_2表面与H_2S分子相互作用较强,吸附能高达-1.06 eV,且电子结构改变明显.  相似文献   

20.
本文基于可调谐半导体激光吸收谱线(TDLAS)技术的直接吸收测量,选用中心工作波长为1 580 nm的DFB激光器,在室温及大气常压条件下检测了模拟烟气中的CO_2浓度;采用去峰拟合法和纯N2线拟合法获得基线后反算出了CO_2的浓度,并将反算结果进行了对比。结果表明:采用纯N2线拟合法反算出的浓度的最大相对误差为2.64%,均方值为1.69%;采用去拟合法反算出的浓度的最大相对误差为9.81%,均方值为7.81%。以纯N2吸收谱线作基线的纯N2线拟合方法反算出的浓度的准确度较高,可以为CO_2浓度测量的基线选择提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号