首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis and characterization of a new class of cationic and zwitterionic Rh(I) complexes, which feature multidentate ligands comprised of donor-functionalized indene or indenide units, are reported. This unusual new ligation strategy provides access to the first charge-neutral [kappa2-P,N]Rh(I) zwitterion, a complex that functions as a catalyst for the C-H/Si-H dehydrogenative coupling of styrene and triethylsilane.  相似文献   

2.
Reaction of the aryl-monophosphine ligand alpha(2)-(diisopropylphosphino)isodurene (1) with the Rh(I) precursor [Rh(coe)(2)(acetone)(2)]BF(4) (coe=cyclooctene) in different solvents yielded complexes of all three common oxidation states of rhodium, depending on the solvent used. When the reaction was carried out in methanol a cyclometalated, solvent-stabilized Rh(III) alkyl-hydride complex (2) was obtained. However, when the reaction was carried out in acetone or dichloromethane a dinuclear eta(6)-arene Rh(II) complex (5) was obtained in the absence of added redox reagents. Moreover, when acetonitrile was added to a solution of either the Rh(II) or Rh(III) complexes, a new solvent-stabilized, noncyclometalated Rh(I) complex (6) was obtained. In this report we describe the different complexes, which were fully characterized, and probe the processes behind the remarkable solvent effect observed.  相似文献   

3.
Reactivity and structural studies of unusual rhodium and iridium systems bearing two N-heterocyclic carbene (NHC) ligands are presented. These systems are capable of intramolecular C-H bond activation and lead to coordinatively unsaturated 16-electron complexes. The resulting complexes can be further unsaturated by simple halide abstraction, leading to 14-electron species bearing an all-carbon environment. Saturation of the vacant sites in the 16- and 14-electron complexes with carbon monoxide permits a structural comparison. DFT calculations show that these electrophilic metal centers are stabilized by pi-donation of the NHC ligands.  相似文献   

4.
The cyclotetraphosphate ion (P(4)O(12)(4)(-)) as a PPN (PPN = (PPh(3))(2)N(+)) salt reacts with [MCl(cod)](2) (M = Rh, Ir; cod = 1,5-cyclooctadiene) to give the dinuclear complexes (PPN)(2)[[M(cod)](2)(P(4)O(12))], in which the two metal moieties are situated trans to each other with respect to the P(4)O(4) ring in the solid state. In solution, however, these complexes exist as mixtures of trans and cis isomers. On the other hand, the P(4)O(12)(4)(-) ion reacts with 4 equiv of [Rh(cod)(MeCN)(x)](+) cation to give the tetranuclear complex [[Rh(cod)](4)(P(4)O(12))], where the four Rh(cod) fragments are bound to the P(4)O(12) platform alternately on both sides of the P(4)O(4) ring. Dinuclear P(4)O(12) complexes of ruthenium and palladium are also synthesized.  相似文献   

5.
Organometallic rhodium(I) derivatives have been studied by 103Rh NMR. The chemical shift range extends from 609 ppm ([Rh.cp.cod]) to 2714.7 ppm ([Rh.fod.cod]). These results are supported by 13C and 31P NMR results, and give information about the bonding in these derivatives. Most of the complexes contain the cycloocta-1,5-diene ligand. For these complexes a linear correlation is observed between δRh and δC (olefinic carbons) (27 points, R = 0.960). For the phosphine derivatives a linear correlation is found between δRh and 1J(RhP) and, also, between δRh and parameters characterizing the basicity of the phosphine ligand. The correlation of δRh with ligand properties has been extended to a wider range of complexes by using the ‘influence parameters’ defined previously (10 points, R = 0.947). The sensitivity of δRh to steric factors is also proved.  相似文献   

6.
Four metal complexes, IL-OPPh2-Ru-p-cymene (3) , IL-OPPh2-Ru-benzene (4) , IL-OPPh2-Ir-Cp* (5) , IL-OPPh2-Rh-COD (6) , have been evaluated for in vitro antioxidant activity such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power activity. Maximum scavenging activity (71.43%) was obtained with IL-OPPh2-Ru-p-cymene, whereas IL-OPPh2-Rh-COD showed the highest reducing power ability. The complexes were also studied for their antimicrobial activity against three Gram-positive and three Gram-negative bacteria. In addition, DNA binding of the complexes was evaluated using calf thymus DNA. Both Ru(II) complexes exhibited good DNA-binding activity while the other complexes did not have any activity. Furthermore, ab initio quantum calculations of four complexes were also carried out using density functional theory to better understand their chemical behaviors.  相似文献   

7.
Four multitopic ligands, N,N′-bis[(S)-prolyl)phenylenediamine, N,N′-bis{[(S)-pyrrolidin-2-yl]methyl}phenylenediamine, N,N′-bis[(S)-N-benzylprolyl]phenylenediamine, N,N′-bis{[(S)-N-benzyl-pyrrolidin-2-yl]methyl}phenylenediamine, were synthesised and their co-ordination properties with Rh(I) and Ir(I) studied. The complexes were prepared by the reaction of [MCl(cod)]2 with AgPF6 and further treatment with the ligand. All ligands form one to one [ML] species with the above metal ions. The structures of these complexes were elucidated by analytical and spectroscopic data (elemental analysis, mass spectroscopy, IR, 1H- and 13C-NMR). Complexes show excellent activities and enantioselectivities up to 30% for the hydrogenation of prochiral olefins under mild reaction conditions.  相似文献   

8.
[structure: see text]. The presence of a suitably situated hydroxy function in a PHOX ligand leads to an enhancement of the enantioselectivity in Rh-catalyzed hydrosilylations of prochiral ketones in the presence of AgBF4 (95% ee for acetophenone as compared to 75% using i-Pr-phosphinooxazoline (PHOX)). Exchanging Rh for Ir affords the product with the opposite absolute configuration (78% ee).  相似文献   

9.
The synthesis and characterisation of a multidentate conformationally flexible ligand based on the dibenzylidene acetone core structure, dbathiophos (1), is described. Ligand 1 has a high affinity for cationic and neutral Cu(I) species. Three unique Cu(I) complexes (4-6) are reported showing that the ligand backbone of dbathiophos is hemilabile, and able to adopt different 1,4-dien-3-one conformational geometries around Cu(I). Complexes 4 and 6 both effectively catalyse the cyclopropanation of styrene with ethyl diazoacetate at low catalyst loadings (1 mol% Cu).  相似文献   

10.
Oxidative addition of the P–P single bond of an ortho-carborane-derived 1,2-diphosphetane (1,2-C2(PMes)2B10H10) (Mes = 2,4,6-Me3C6H2) to cobalt(−i) and nickel(0) sources affords the first heteroleptic complexes of a carborane-bridged bis(phosphanido) ligand. The complexes also incorporate labile ligands suitable for further functionalisation. Thus, the cobalt(i) complex [K([18]crown-6)][Co{1,2-(PMes)2C2B10H10}(cod)] (cod = 1,5-cyclooctadiene) bearing a labile cyclooctadiene ligand undergoes facile ligand exchange reactions with isonitriles and tert-butyl phosphaalkyne with retention of the bis(phosphanido) ligand. However, in the reaction with one equivalent of P4, the electron-rich bis(phosphanido) moiety abstracts a single phosphorus atom with formation of a new P3 chain, while the remaining three P atoms derived from P4 form an η3-coordinating cyclo-P3 ligand. In contrast, when the same reaction is performed with two equivalents of the cobalt(i) complex, a dinuclear product is formed which features an unusual P4 chain in its molecular structure.

Cobalt and nickel complexes of a new carborane-substituted bis(phosphanido) ligand have been prepared. Reaction of the cobalt complex with white phosphorus (P4) results in a remarkable fragmentation of P4 into P3 and P1 units.  相似文献   

11.
12.
A new indene-based ligand featuring pendant phosphine sulfide and amine donor fragments has been developed; Rh(I) coordinates to the neutral form of the ligand in a kappa2-[N,S] fashion, while the anionic form of the ligand binds Rh(I) and Mn(I) in kappa2-[C,S] and eta5 modes, respectively.  相似文献   

13.
14.
Three molecular structures are reported which utilize the NiN(2)S(2) ligands -, (bis(mercaptoethyl)diazacyclooctane)nickel and -', bis(mercaptoethyl)diazacycloheptane)nickel, as metallodithiolate ligands to rhodium in oxidation states i, ii and iii. For the Rh(I) complex, the NiN(2)S(2) unit behaves as a bidentate ligand to a square planar Rh(I)(CO)(PPh(3))(+) moiety with a hinge or dihedral angle (defined as the intersection of NiN(2)S(2) and S(2)Rh(C)(P) planes) of 115 degrees . Supported by -' ligands, the Rh(II) oxidation state occurs in a dirhodium C(4) paddlewheel complex wherein four NiN(2)S(2) units serve as bidentate bridging ligands to two singly-bonded Rh(II) ions at 2.893(8) A apart. A compilation of the remarkable range of M-M distances in paddlewheel complexes which use NiN(2)S(2) complexes as paddles is presented. The Rh(III) state is found as a tetrametallic [Rh(-')(3)](3+) cluster, roughly shaped like a boat propeller and structurally similar to tris(bipyridine)metal complexes.  相似文献   

15.
A.C. Fabretti  A. Giusti 《Polyhedron》1986,5(12):1927-1930
Some 2-mercapto-5-methyl-1,3,4-thiadiazole complexes of Rh(III), Ir(III), Ru(III) and Os(III) have been prepared and characterized by chemical-analysis, conductometric, room-temperature magnetic-moment, electronic, IR, EPR and thermogravimetric measurements. From the magnetic properties it was derived that the above ligand forms low-spin complexes with all the metal ions. The position and multiplicity of the metal-halogen stretching modes in the far-IR region have been investigated. The wavelengths of the principal electronic absorption peaks have been accounted for in terms of the crystal field theory and the various parameters have been calculated.  相似文献   

16.
N-heterocyclic bis-carbene ligand (bis-NHC) which was derived from 1,1′-diisopropyl-3,3′-ethylenediimidazolium dibromide (L·2HBr) via silver carbene transfer method, reacted with [(η6-p-cymene)RuCl2]2 and [CpMCl2]2 (Cp = η5-C5Me5, M = Ir, Rh) respectively, afforded complexes [(η6-p-cymene)RuCl2]2(L) (1), [CpIrCl2]2(L) (2) and [CpRhCl(L)][CpRhCl3] (3). When [CpIrCl2]2 was treated with 2 equiv AgOTf at first, and then reacted with bis-NHC ligand, [CpIrCl(L)]OTf (4) was obtained. The molecular structures of complexes 1-4 were determined by X-ray single crystal analysis, showing that 1 and 2 adopted bridging coordination mode, 3 and 4 adopted chelating coordination mode. All of these complexes were characterized by 1H, 13C NMR spectroscopy and element analysis.  相似文献   

17.
18.
The first series of Rh(I) distibine complexes with organometallic co-ligands is described, including the five-coordinate [Rh(cod)(distibine)Cl], the 16-electron planar cations [Rh(cod)(distibine)]BF4 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 and the five-coordinate [Rh(CO)(distibine)2][Rh(CO)2Cl2] (distibine=R2Sb(CH2)3SbR2, R=Ph or Me, and o-C6H4(CH2SbMe2)2). The corresponding Ir(I) species [Ir(cod)(distibine)]BF4 and [Ir{Ph2Sb(CH2)3SbPh2}2]BF4 have also been prepared. The complexes have been characterised by 1H and 13C{1H} NMR and IR spectroscopy, electrospray mass spectrometry and microanalysis. The crystal structure of the anion exchanged [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF(6).3/4CH2Cl2 is also described. The methyl-substituted distibine complexes are less stable than the complexes of Ph2Sb(CH2)3SbPh2, with C-Sb fission occurring in some of the complexes of the former. The salts [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF6 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 undergo oxidative addition with Br2 to give the known [RhBr2{Ph2Sb(CH2)3SbPh2}2]+, while using HCl gives the same hydride complex from both precursors, which is tentatively assigned as [RhHCl2{Ph2Sb(CH2)3SbPh2}]. An unexpected further Rh(III) product from this reaction, trans-[RhCl2{Ph2Sb(CH2)3SbPh2}{PhClSb(CH2)3SbClPh}]Cl, was identified by a crystal structure analysis and represents the first structurally characterised example of a chlorostibine coordinated to a metal. [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 reacts with CO to give [Rh(CO){Ph2Sb(CH2)3SbPh2}2]BF4 initially, and upon further exposure this species undergoes further reversible carbonylation to give a cis-dicarbonyl species thought to be [Rh(CO)2{Ph2Sb(CH2)3SbPh2}{kappa1Sb-Ph2Sb(CH2)3SbPh2}]BF4 which converts back to the monocarbonyl complex when the CO atmosphere is replaced with N2.  相似文献   

19.
20.
The homogeneous hydrogenation of cyclohexene catalyzed by Rh(I) and Ir(I) complexes of the terdentate ligands (L) HN(CH2CH22)2 (A = P, As) was investigated in the temperature range 20 - 50°C. Thermodynamic parameters corresponding to the formation of the dihydrido complexes ML(H)2Cl (M = Ir(I), Rh(I)) and the olefin complexes MLCl(olefin) were computed. The activation parameters corresponding to the rate constant were also calculated. An inverse relationship is found between the enthalpy of formation ΔH0 of the dihydrido complexes and the enthalpy of activation ΔH of the hydrogenation step. This relationship establishes the involvement of the dihydrido complexes as the active intermediates in olefin coordination and hydrogen transfer. The stereochemistry of the terdentate complexes in dihydride formation is discussed. It is concluded that the enthalpy of formation ΔH0 of the dihydrido complexes of terdentate ligands is very favourable, as there is no change in the configuration of the ligand in oxidative addition reaction. The significance of the steric factors in the hydrogenation step is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号