首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a comprehensive theoretical investigation of the influence of the ligand L on the regulation of the product selectivity for the [Ni(0)L]-catalyzed cyclodimerization of 1,3-butadiene. The investigation was based on density functional theory (DFT) and a combined DFT and molecular mechanics (QM/MM) approach for the real [bis(butadiene)Ni(0)L] catalysts with L = PMe(3), I; PPh(3), II; P((i)Pr)(3), III; and P(OPh)(3), IV. The role of electronic and steric effects has been elucidated for all crucial elementary steps of the entire catalytic cycle. Allylic isomerization, allylic enantioface conversion, as well as oxidative coupling are shown to be influenced to a minor extent by electronic and steric effects. In contrast, the ligand's properties have a distinct influence on the preestablished equilibrium between the eta(3),eta(1)(C(1)) and bis-eta(3) forms 2 and 4, respectively, of the [(octadienediyl)Ni(II)L] complex and on the rate-determining reductive elimination following competing routes for generation of either VCH, cis-1,2-DVCB, or cis,cis-COD. Electronic factors are shown to predominantly determine the position of the kinetically mobile 2 right harpoon over left harpoon 4 equilibrium. 4 is the prevailing species for ligands L that are pi-acceptors (L = P(OPh)(3)) or weak sigma-donors (L = PPh(3)), while stronger sigma-donors (L = PMe(3), P((i)Pr)(3)) displace the equilibrium to the left. Steric bulk on the ligand as well as its pi-acceptor ability act to facilitate the reductive elimination, while sigma-donor abilities serve to retard this process. Electronic and steric factors are found to not influence uniformly the reductive elimination routes with either 2 or 4 involved. The regulation of the product selectivity is elucidated on the basis of both thermodynamic and kinetic considerations.  相似文献   

2.
A comprehensive theoretical investigation of the mechanism for the Ni(0)-catalyzed cyclotrimerization of 1,3-butadiene by the [Ni(0)(eta(2)-butadiene)(3)] active catalyst complex is presented by employing a gradient-corrected DFT method. All critical elementary processes of the catalytic cycle have been scrutinized, namely, oxidative coupling of two butadienes, butadiene insertion into the allyl-Ni(II) bond, allylic isomerization in both octadienediyl-Ni(II) and dodecatrienediyl-Ni(II) species, and reductive elimination under ring closure. For each of these elementary steps several conceivable routes and also the different stereochemical pathways have been probed. The favorable route for oxidative coupling start from the prevalent [Ni(0)(eta(2)-butadiene)(3)] form of the active catalyst through coupling between the terminal non-coordinated carbon atoms of two reactive eta(2)-butadiene moieties; this is assisted by an ancillary butadiene in eta(2)-mode. The initial eta(3),eta(1)(C(1))-octadienediyl-Ni(II) product is the active precursor for subsequent butadiene insertion, which preferably takes place into the eta(3)-allyl-Ni(II) bond. The insertion is driven by a strong thermodynamic force. Therefore, the dodecatrienediyl-Ni(II) products, with the most favorable bis(eta(3)-allyl),Delta-trans isomers in particular, represent a thermodynamic sink. Commencing from a preestablished equilibrium between the various bis(eta(3)-allyl),Delta-trans forms of the [Ni(II)(dodecatrienediyl)] complex, the major cyclotrimer products, namely all-t-CDT, c,c,t-CDT and c,t,t-CDT, are formed along competing paths by reductive elimination under ring closure, which is shown to be rate-controlling. The all-c-CDT-generating path is completely precluded by both thermodynamic and kinetic factors, giving rise to negligibly populated bis(eta(3)-allyl),Delta-cis precursor isomers. The regulation of the selectivity of the CDT formation as well as the competition between the two reaction channels for generation of C(12)- and C(8)-cycloolefins is elucidated.  相似文献   

3.
Heavy Metal π-Complexes. IX. The Chain Polymers [(1,2- (CH3)2C6H4BiCl3)2], [(1,3- (CH3)2C6H4BiCl3)2] and [(1,4- (CH3)2C6H4BiCl3)2] In the crystal structures of the three solid state complexes (C6H4(CH3)2BiCl3 (C6H4(CH3)2 = o-xylene: 1 , m-xylene: 2 , p-xylene: 3 ) quasi-dimeric units of almost undistorted, arene coordinated BiCl3 fragments can be found that are further associated via additional Bi? Cl contacts to form one-dimensional polymeric chains. Whereas the chains of 2 and 3 are constituted by Bi2Cl2 four-membered rings only, further Cl-bridging in 1 leads to additional trigonal-bipyramidal arrangements with Bi atoms exhibiting coordination numbers of 3 + 3 + 1 and 3 + 2 + 1, respectively (prim. + sec. Cl contacts + arene). The arene-metal bonding is characterized by Bi-arene distances in the range from 297 – 306 pm, including ring slippages of 24 –41 pm and 73 pm with the Bi atoms being six and seven coordinated, respectively. The direction of this slipping with respect to the arene's methylation sites cannot be understood in terms of electronic influences but is shown to be caused by steric demands. The values IP1 of the arenes prove to determine the colours of the complexes.  相似文献   

4.
Charge density studies of chemical bonds for two iron complexes, [(NO)Fe(S,S-C6H4)2] [PPN] (1), where PPN = N(Pph3)2 and Fe3(NO)3(S,S-C6H4)3 (2) are investigated in terms of the topological properties at bond critical points based on the ‘atoms in molecule’ theory. The one electron reduction form (1R) of complex 1 and the one electron oxidation form (2O) of complex 2 are also included for comparison. The X-ray absorption spectroscopy of Fe K- and LIII,II-edges, as well as the N/S K-edge are applied to verify the illustration in the variation of the electronic structures. Based on the ρc, ?2ρc, and Hb values among the compound studied, Fe-S/N can be regarded as polarized covalent bond, and Fe-N bonds show stronger covalent character than that of the Fe–S bond, which is believed to be a highly polarized covalent bond.  相似文献   

5.
A detailed theoretical investigation of the mechanism for the [Ni(0)]-catalyzed co-oligomerization of 1,3-butadiene and ethylene to afford linear and cyclic C(10)-olefins is presented. Crucial elementary processes have been carefully explored for a tentative catalytic cycle, employing a gradient-corrected density functional theory (DFT) method. The favorable route for oxidative coupling starts from the prevalent [Ni(0)(eta(2)-butadiene)(2)(ethylene)] form of the active catalyst through oxidative coupling between the two eta(2)-butadienes. The initial eta(3),eta(1)(C(1))-octadienediyl-Ni(II) product is the active precursor for ethylene insertion, which preferably takes place into the syn-eta(3)-allyl-Ni(II) bond of the prevalent eta(3)-syn,eta(1)(C(1)),Delta-cis isomer. The insertion is driven by a strong thermodynamic force, giving rise entirely to eta(3),eta(1),Delta-trans-decatrienyl-Ni(II) forms, with the eta(3)-anti,eta(1),Delta-trans isomer almost exclusively generated. Occurrence of allyl,eta(1),Delta-cis isomers, however, is precluded on both kinetic and thermodynamic grounds, thereby rationalizing the observation that cis-DT and cis,cis-CDD are never formed. Linear and cyclic C(10)-olefins are generated in a highly stereoselective fashion, with trans-DT and cis,trans-CDD as the only isomers, along competing routes of stepwise transition-metal-assisted H-transfer (DT) and reductive CC elimination under ring closure (CDD), respectively, that start from the prevalent eta(3)-anti,eta(1),Delta-trans-decatrienyl-Ni(II) species. The role of allylic conversion in the octadienediyl-Ni(II) and decatrienyl-Ni(II) complexes has been analyzed. As a result of the detailed exploration of all important elementary steps, a theoretically verified, refined catalytic cycle is proposed and the regulation of the selectivity for formation of linear and cyclic C(10)-olefins is elucidated.  相似文献   

6.

Synthesis and X-ray structure analysis of host-guest complexes [(H4L)(SiF6)2-4H2O] (I) and [(H4L)(GeF6)2-4H2O] (II) are reported (L = meso-5,7,7,12,12,14-hexamethyl-l,4,8,11-tetraazacyclo-tetradecane). The crystals of both compounds are triclinic with close unit cell parameters. I: a = 9.576(3), b= 9.217(3), c= 8.334(2) å, α= 105.66(2), Ω= 83.68(2), α = 105.38(2)? II: a= 9.627(3), b = 9.358(3), c.= 8.497(4) A, a= 106.02(2), Ω = 83.74(2), α= 106.06(2)?. The structural units of the crystals are the (H4L)4+ cations, the hexafluorosilicate (or hexafluowgemanate) anions, and the water molecules linked by a system of H bonds. The macrocycle in the complexes has C1 symmetry. In the inorganic anions, the silicon as well as germanium atom is surrounded by an octahedron of six fluorine atoms.

  相似文献   

7.
8.
Optical absorption spectra taken at 300 and 77 K are reported for six-fold octahedrally coordinated Yb3+(4f13) in [(C6H5)3PH]3 YbCl6. In addition to vibronic spectra we observe electronic transitions which suggest that inversion symmetry is lifted by a small distortion similar to that reported for the Nd3+(4f3) spectrum of the corresponding salt. The vibronic as well as the electronic transition have been analyzed on the basis of six-fold octahedral symmetry. The analysis appears reasonable and consistent in comparison with other rare-earth ions that have been studied in similar cubic and octahedral environments.  相似文献   

9.
10.
11.
12.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

13.
Triclinic single crystals of [(C6H10)(NH3)2][Ni(H2O)4C6H2(COO)4]·4H2O have been prepared in aqueous solution at 55 °C. Space group (Nr. 2), a = 691.23(6), b = 924.84(5), c = 1082.43(7) pm, α = 74.208(6)°, β = 75.558(7)°, γ = 68.251(6)°, V = 0.60985(7) nm3, Z = 1. The Nickel(II) species, located on a crystallographic inversion centre, is coordinated in a trans‐octahedral fashion by two oxygen atoms stemming from the centrosymmetric pyromellitate anions and four from water molecules (Ni–O 205.82(12) – 208.11(13) pm). The connection between Ni2+ and [C6H2(COO)4)]4? leads to infinite chain‐like polyanions extending parallel to with {Ni(H2O)4[C6H2(COO)4]2?}n composition. [(C6H10)(NH3)2]2+‐cations are accomodated between the chains, compensating for the negative charge of the polyanions. Thermogravimetric analysis in air showed that the loss of water of crystallisation occurs in two steps between 102 and 206 °C, corresponding to the loss of 6 and 2 water molecules per formula unit, respectively. The dehydrated sample was stable between 206 and 353 °C. Further decomposition yielded nickel(II) oxide (NiO).  相似文献   

14.
1INTRODUCTIONInrecentyears,theresearchesontinsulfidemateri-alshavedrawnchemists’attentionowningtotheirpo-tentialapplicationsasphotovoltaicmaterials,hologra-phicrecordingsystem[1,,solarcontroldevices[3]and2]semiconductormaterials.Ageneralmethodtopreparetinsulfidesisthechemicalvapourdepositionfromdi-scretesimpletin-sulfidecomplexes,suchas(PhS)4Sn,Sn(SCy)4and[CF3(CF2)5S]4Sn[4].Duringoureffortinsynthesizingtin-sulphurcomplexes[5],weobtainedtwomononucleartincomplexes,(4-NH2C6H4S)4Sn1an…  相似文献   

15.
A new and efficient catalytic method for deprotection of allyl carboxylic esters using a transition metal complex is reported. The reaction proceeds with a high substrate/catalyst ratio and without use of additional nucleophiles, giving the deprotected carboxylic acid in a quantitative yield. A variety of substrates, including the multifunctional amino acids and peptides, are also usable. The new method is more efficient, safe, and operationally simple in comparison to the conventional palladium-catalyzed method.  相似文献   

16.
17.
18.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号