首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article we study the impact of the spin-orbit interaction on the electron quantum confinement for narrow gap semiconductor quantum dots. The model formulation includes: (1) the effective one-band Hamiltonian approximation; (2) the position- and energy-dependent quasi-particle effective mass approximation; (3) the finite hard wall confinement potential; and (4) the spin-dependent Ben Daniel-Duke boundary conditions. The Hartree-Fock approximation is also utilized for evaluating the characteristics of a two-electron quantum dot system. In our calculation, we describe the spin-orbit interaction which comes from both the spin-dependent boundary conditions and the Rashba term (for two-electron quantum dot system). It can significantly modify the electron energy spectrum for InAs semiconductor quantum dots built in the GaAs matrix. The energy state spin-splitting is strongly dependent on the dot size and reaches an experimentally measurable magnitude for relatively small dots. In addition, we have found the Coulomb interaction and the spin-splitting are suppressed in quantum dots with small height. Received 15 May 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

2.
库仑场对抛物量子点中强耦合极化子性质的影响   总被引:3,自引:3,他引:0       下载免费PDF全文
陈英杰  肖景林 《发光学报》2006,27(5):665-669
采用线性组合算符和幺正变换方法研究了在库仑场束缚下抛物量子点中强耦合束缚极化子的振动频率和基态能量。并对其进行了数值计算,结果表明:强耦合束缚极化子的振动频率和基态能量随量子点的有效受限长度的增加而减小,随电子-LO声子耦合强度的增加而增加,束缚极化子的基态能量随库仑势的增加而减小。  相似文献   

3.
Quantum states and energy levels of an electron in a cylindrical quantum dot with different models of confinement potentials are studied. Two models of confinement potentials, Morse potential and modified Pöschl-Teller potential, are considered. It is shown that due to distinction between symmetric and asymmetric nature of potentials, there is a fundamental difference in behavior of the ground levels of charge carriers in these potentials. At small values of the width of Morse potential, quantum emission of electron occurs which is not observed in case of the modified Pöschl-Teller potential.  相似文献   

4.
ABSTRACT

Using the two-dimensional (2D) diagonalisation method, the impurity-related electronic states and optical response in a 2D quantum dot with Gaussian confinement potential under nonresonant intense laser field are investigated. The effects of a hydrogenic impurity on the energy spectrum and binding energy of the electron and also intersubband optical absorption are calculated. The obtained numerical results show that the degeneracies of the excited electron states are broken and the absorption spectrum exhibits a redshift with the values of the laser field. The findings indicate a new degree of freedom to tune the performance of novel optoelectronic devices, based on the quantum dots and to control their specific properties by means of intense laser field and hydrogenic donor impurity. Using the same Gaussian confinement model, the electronic properties of a confined electron in the region of a spherical quantum dot are studied under the combined effects of on-centre donor impurity and a linearly polarised intense laser radiation. The three-dimensional problem is used to theoretically model, with very good agreement, some experimental findings reported in the literature related to the photoluminescence peak energy transition.  相似文献   

5.
非对称量子点中弱耦合束缚极化子的性质   总被引:1,自引:1,他引:0       下载免费PDF全文
肖景林  徐秋 《发光学报》2008,29(1):15-18
采用线性组合算符和幺正变换方法研究了非对称量子点中弱耦合束缚极化子的性质。导出了非对称量子点中弱耦合束缚极化子的振动频率和基态能量随量子点的横向和纵向有效受限长度,库仑束缚势和电子-声子耦合强度的变化关系。通过数值计算,结果表明:非对称量子点中弱耦合束缚极化子的振动频率和基态能量随量子点的横向和纵向有效受限长度的减小而迅速增大。  相似文献   

6.
An electron gas in a strongly oblated ellipsoidal quantum dot with impenetrable walls in the presence of external magnetic field is considered. Influence of the walls of the quantum dot is assumed to be so strong in the direction of the minor axis (the OZ axis) that the Coulomb interaction between electrons in this direction can be neglected and considered as two-dimensional. On the basis of geometric adiabaticity we show that in the case of a few-particle gas a powerful repulsive potential of the quantum dot walls has a parabolic form and localizes the gas in the geometric center of the structure. Due to this fact, conditions occur to implement the generalized Kohn theorem for this system. The parabolic confinement potential depends on the geometry of the ellipsoid, which allows, together with the magnetic field to control resonance frequencies of transitions by changing the geometric dimensions of the QD.  相似文献   

7.
The temperature effect of the triangular bound potential quantum dot qubit   总被引:2,自引:0,他引:2  
We study the eigenenergies and eigenfunctions of the ground and the first-excited states of an electron, which is strongly coupled to LO-phonon in a quantum dot with triangular bound potential by using the Pekar variational method. This system may be used as a two-level qubit. Numerical calculations are performed on the electron probability density varying with respect to the time, the temperature, the electron–LO-phonon coupling strength, the confinement length of the quantum dot and the polar angle. The relationship between the oscillating period and the polar angle is derived.  相似文献   

8.
A three-electron quantum dot under an external magnetic field was studied. A number of phase diagrams have been obtained to demonstrate how the variation of the magnetic field and/or the parameters of confinement would lead to the occurrence of doublet–quadruplet transitions. Both the confinement with parabolic potential and the square well potential have been considered. We show that the parameters of confinement alter the ground state of the quantum dot from a spin doublet to a spin quadruplet. This result indicates that the quantum dot can be used as a good candidate for qubit of a quantum computer.  相似文献   

9.
The electronic structure of dynamic quantum dots formed by surface acoustic waves potential and the confinement potential produced by gate voltage has been investigated within the spin-density-functional theory. We found the addition energy of this kind quantum dot in general decreases as the electron number increases, so the basic feature of the quantized acoustoelectric current with multi-plateaus can be reproduced. The addition energy needed for a second electron entering into the dynamic quantum dot is found to be about 2.21 meV, which is in good agreement with experimental estimations. Moreover, the formation of the Wigner molecule-like states is observed when the number of electrons in the dot exceeds three. By the calculated addition energy and the evolution of the electron density in the presence of a magnetic field, we also explained the influence of the magnetic field on the acoustoelectric current appeared in the experiments.  相似文献   

10.
Spherical quantum dots with a few charged Fermi particles (electrons or holes) are studied for different total spins. Simulation by quantum path integral Monte Carlo method is performed. The dependence of the electron correlations in the quantum dot is studied at different mean interelectron separation controlled by number of electrons in the quantum dot and by steepness of electron confinement (the latter parameter can be changed by the gate voltage). The ‘cold’ melting—quantum transition from Wigner crystal-like state (i.e. from regime of strongly correlated electrons) to a Fermi liquid-like state—driven by the steepness of electron confinement is studied. The pair correlation function and radial function characterizing electron quantum delocalization are analyzed.  相似文献   

11.
抛物形量子点中弱耦合极化子的性质   总被引:4,自引:4,他引:0  
采用线性组合算符和幺正变换方法研究了抛物形量子点中弱耦合极化子的基态能量和束缚能。计算结果表明,基态能量和束缚能随有效束缚强度增加而减小。随着有效束缚强度逐渐加大,最后逐渐趋于体结构极化子的基态能量。当有效束缚强度给定,基态能随电子-体纵光学声子耦合强度增加而减小。由于有效束缚强度与量子点受限强度平方根成反比,所以量子点受限越强,基态能和束缚能越大,电子-体纵光学声子耦合强度的变化对量子点的影响越小。当量子点受限变弱时,电子-体纵光学声子耦合强度变化对量子点的影响变大。所以在量子点弱受限区域,极化子对量子点的影响不容忽略。  相似文献   

12.
The effect of elastic anisotropy on the strain fields and confinement potentials in InAs/GaAs quantum dot (QD) nanostructures was investigated for an isolated dot and a stacked multi-layer dots using finite element analysis and model solid theory. The assumption of isotropy tends to underestimate especially hydrostatic strain that is known to modify confinement potentials in conduction band. Consideration of anisotropy results in a wider band gap and shallower potential well as compared with the isotropic model. Since the band gap and potential well depth would be related to opto-electronic properties of quantum dot systems via quantum mechanical effects, it is suggested that consideration of elastic anisotropy in the calculation of strains and band structures is necessary for the design of QD-based opto-electronic devices.  相似文献   

13.
葛利荣  肖景林 《发光学报》2007,28(6):832-836
采用线性组合算符和幺正变换方法研究了磁场和库仑场对抛物量子点中极化子激发态性质的影响。导出了抛物量子点中弱耦合束缚磁极化子的振动频率、第一内部激发态能量、激发能量与量子点的有效受限长度、库仑束缚势和磁场的回旋频率之间的变化关系。通过数值计算,结果表明:抛物量子点中弱耦合束缚极化子的振动频率、第一内部激发态能量、激发能量均随量子点的有效受限长度减小而迅速增大。随库仑束缚势增大而增大。随磁场的回旋频率的增加而增大。  相似文献   

14.
We explore the dynamics of harmonically confined single electron quantum dots as a function of dot size under periodically fluctuating confinement potential. The system of interest is a 2-D system in the presence of a perpendicular magnetic field. We show that for given strengths of the magnetic field and effective mass, a periodic variation in the strength of the confinement potential could invite interesting features in the dynamics of the system. Also, the pattern of time evolution of eigenstates of the unperturbed system reveals significant size-dependence. The fluctuation in the confinement potential from its initial value is found to modulate the dynamical aspects in a prominent way. The presence of cubic anharmonicity in the confining field brings in new features in the dot dynamics.  相似文献   

15.
Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease with increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases.  相似文献   

16.
Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron–phonon coupling strength α, resonant frequency of the magnetic field ω_c, confinement strength of the quantum dot ω_0, and dielectric constant ratio of the medium η; the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ_2, and dielectric constant ratio of the medium η; the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller.  相似文献   

17.
The electron energy levels, direct energy band gaps, electron and hole effective masses as well as the transverse effective charge of InAs spherically shaped quantum dots have been studied as a function of the quantum dot radius considered as varying from 1 to 10 nm. The direct energy band-gap as well as the electron and heavy hole effective masses decrease non-linearly with increasing the quantum dot radius. Nevertheless, the transverse effective charge is found to increase with increasing the quantum dot radius. It is concluded that the quantum confinement has a strong influence on all the studied physical quantities for quantum dot radius below 6 nm. The results of the present contribution show that more opportunities can be offered to tailor desired optoelectronic properties surpassing those presented by bulk InAs materials.  相似文献   

18.
We carry out a theoretical analysis of wetting layer effect on band-edge profiles and electronic structures of InAs/GaAs truncated-pyramid quantum dots, including the strain effect. A combination of an analytical strain model and an eight-band Fourier transform-based k · p method is adopted in the calculation. Strain modified band-edge profiles indicates that wetting layer widens the potential well inside the dot region. Wetting layer changes ground-state energy significantly whereas modifies probability density function only a little. The main acting region of wetting layer is just underneath the base of the dot. Wetting layer redistributes probability density functions of the lowest electron state and probability density functions of highest hole state differently because of the different action of quantum confinement on electrons and holes.  相似文献   

19.
Direct optical absorption of light is theoretically investigated in a spherical quantum dot from GaAs. The confinement potential of the dot is approximated as parabolic. Three regimes of size quantization are discussed: weak, strong, and intermediate. The corresponding threshold frequencies of absorption are determined. A comparison with the case of a spherical quantum dot with rectangular infinitely high confinement potential is performed.  相似文献   

20.
A theory of photophysical burning of spectral holes in an inhomogeneously broadened light absorption profile of spherical quantum dots under vibrational resonance conditions is developed. The energy spectrum and the eigenfunctions of polaron-like excitations that arise in a quantum dot when the energy of an optical phonon is close to the energy gap between some pair of levels of the quantum dot electron subsystem are found by the method of canonical transformations. Expressions describing the difference light absorption spectra of quantum dots in the regimes of strong and weak confinement are obtained within a simple kinetic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号