首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Chen J  Zhu Z 《Ultrasonics》2006,44(Z1):e115-e118
In this paper, the multiple scattering of interacting encapsulated microbubbles in suspensions is calculated using two novel approaches--Kargl's effective medium approach and Ye and Ding's approach of 2nd-order correction. Two types of contrast agents with bubbles of different sizes and concentrations are chosen for our numerical simulations. One is Albunex, which is depicted by Church and has a size range of several microns, and the other is sodium laureate solution (before fractionation) described by Soetanto and Chan and has an average size of 35.5 microm. The numerical results from these two approaches are compared with that from the linear approximation. It is found that the multiple scattering effects on attenuation and dispersion of sound in suspensions are evident in the cases of high bubble volume fractions, basically greater than the order of 1 x 10(-4), and much more obvious for larger bubbles with average size of tens of microns.  相似文献   

2.
The enhancement of ultrasound-induced cell destruction, lysis, and sonoporation in low cell concentration suspensions (2 x 10(5)/mL) by the presence of contrast agents (gas bubble to cell ratio = 230) was demonstrated using cervical cancer cells (HeLa S3) suspensions containing micron-size denatured albumin microspheres filled with air (Albunex) or octafluoropropane (Optison). The suspensions were insonificated by 2-MHz continuous or tone burst ultrasound in near field. The spatial peak-pressure amplitude was 0.2 MPa. The enhancement of cell destruction due to Optison was shown to be much higher than that due to Albunex for similar bubble concentration and ultrasound conditions. For tone burst exposures, significant lysis and sonoporation only occurred in the presence of a contrast agent. The majority of the bioeffects observed occurred in the first 5 min of exposure. The relationship between the enhancement of bioeffects and duty cycle of tone burst ultrasound appears to indicate that both stable gas spheres of contrast agents and cavitation nuclei created by the disruption of the gas spheres play a significant role in causing the bioeffects.  相似文献   

3.
Evaluation of synthetic phospholipid ultrasound contrast agents   总被引:8,自引:0,他引:8  
The echogenic properties of synthetic, phospholipid encapsulated, air-filled microbubbles with various carbon-chain length as ultrasound contrast agents are investigated through the use of a flow-through laboratory ultrasound system. Specifically, we investigate the effect of shell carbon-chain length on the ultrasonic signal for a variety of flow rates. Averaged, integrated backscatter power measurements from the lipid encapsulated agents are benchmarked against those of Albunex (Albunex is a registered trademark of Molecular Biosystems, Inc., San Diego, CA), a commercially available, air-filled protein microbubbles contrast agent, approved for clinical use in echocardiography in the United States by the Food and Drug Administration. We find that the lipid encapsulated agents sustain less damage leading to gas dissolution or particle destruction as compared to Albunex in the slow-flow studies performed. The carbon-chain length of the encapsulating lipid molecule is shown not to observably affect the backscattered amplitude of ultrasound at flow velocities exceeding 7 mm/s.  相似文献   

4.
In this paper we present a simple theoretical model of how pulsed ultrasound is attenuated by the particles in a solid/liquid flow. The theoretical model is then used to predict the attenuation of sound, given the mass fraction, the density, and the size distribution of the solid particles. The model is verified experimentally for suspensions of 0-10% (by mass) Dolomite ((Ca,Mg)CO3) particles and water. The experimental results show that the attenuation of sound due to particles varies linearly with mass fraction, and that the proposed theoretical model can be used to predict this attenuation. In all experiments the transmitter and receiver array were clamped onto the pipe wall, thus providing a completely non-invasive and non-intrusive measurement technique.  相似文献   

5.
X-ray reflectivity measurements of liquid surfaces were demonstrated using a recently developed liquid interface reflectometer at SPring-8. The reflectometer, equipped with a two-dimensional hybrid pixel array detector (PILATUS), achieved x-ray reflectivity towards 10-9 with an integration time at each angle of only 1 sec, offering enormous potential for rapid measurements. Time-resolved measurements at a time resolution of 1 min were performed on the adsorption process of a globular protein lysozyme on a water/air interface.  相似文献   

6.
The ultrasonic attenuation coefficient, phase velocity, and group velocity spectra are reported for a suspension that supports negative group velocities. The suspension consists of plastic microspheres with an average radius of 80 microm in an aqueous medium at a volume fraction of 3%. The spectra are measured using a broadband method covering a range from 2 to 20 MHz. The suspension exhibits negative group delays over a band near 4.5 MHz, with the group velocity magnitude exceeding 4.3 x 10(8) m/s at one point. The causal consistency of these results is confirmed using Kramers-Kronig relations.  相似文献   

7.
Ultrasonic spectrometry was applied to the particle size analysis of disperse systems. The investigations were made for acoustic conditions called the long-wavelength regime (LWR). In the LWR the acoustic behaviour is governed by dissipative effects rather than by scattering. Two principal theoretical approaches to ultrasonic spectrometry — scattering theory and coupled phase models — are introduced. A model based on a newly developed coupled phase model and the scattering theory (ECAH theory) is implemented in the ultrasonic spectrometer Acousto Phor. Experiments were carried out for several suspensions with a high density contrast. It could be demonstrated that the model successfully describes acoustic attenuation and that the inversion algorithm finds particle size distributions comparable to those given by other measurement techniques. With regard to the particle size, a lower and an upper limit for the applicability were determined, which include three decades. As a further result, the model was validated at concentrations up to 10 vol.%. The model is considered to be open to development to cover even higher concentrations.  相似文献   

8.
We have developed a novel experimental technique for tracking small particles in three dimensions with nanometer accuracy. The longitudinal positioning of a micrometer-sized particle is determined by using the Fresnel approximation to describe the transverse distribution of the wavefront that originated in the particle. The method utilizes the high-sensitivity quantitative phase imaging capability of diffraction phase microscopy recently developed in our laboratory. We demonstrate the principle of the technique with experiments on Brownian particles jittering in water both in bulk and in the vicinity of a boundary. The particles are localized in space within an error cube of 20 nm x 20 nm x 20 nm for a 33 Hz acquisition rate and 20s recording time.  相似文献   

9.
A new generation of broadband reflectometers based on solid state components has been installed on Tore-Supra. With reflectometers covering the range 50 to 155 GHz, the whole plasma can be scanned. Two X-mode reflectometers (V and W band) are dedicated to electron density profile measurements. Diagnostics are operated routinely with an automatic algorithm to reconstruct the density profile from shot to shot. A fast acquisition mode is available to study short time plasma evolution. For turbulence and transport studies, a third reflectometer operating between 105 and 155 GHz measures density fluctuations in the plasma centre. Sensitive to large scales, it can retrieve density perturbation due to MHD modes or broadband turbulence. Lastly, a Doppler reflectometer, based on back scattering, is being installed for measuring the poloidal rotation and fluctuations amplitude at higher wave numbers.  相似文献   

10.
The paper contains an investigation of broadband pulsed ultrasonic spectroscopy techniques, intended for testing of suspensions, such as a liquid-particle flow containing small diameter particles. Influence of traditional and novel broadband pulse shapes on quality of frequency spectra is analysed, as well as pulse design aspects leading to an optimal shape of an ultrasonic excitation wave. Effects that may influence signal quality and method reliability in a given setup, in particular resonances and noise are discussed. Solutions for signal acquisition and averaging techniques are presented, as well as results of testing of instrumentation limits and overall performance. Results of acoustic spectroscopy measurement of a concentrated liquid-particle flow are provided. A number of experimental and numerical examples, together with comprehensive explanations, show a potential for ultrasonic attenuation spectroscopy to be a successful methodology for an on-line measurement of fluid-particle suspensions and composite non-homogeneous materials in general.  相似文献   

11.
Based on technology described in a Du Pont patent for an offline system, we have developed a prototype in-line ultrasonic cell for measuring particle size distribution. We have used this cell to verify the Allegra-Hawley model of ultrasonic attenuation in dilute (< 5 % vol) slurries of sub-micron ceramic particles, and we are developing a model that can cope with the multiple scattering effects occuring at higher concentrations. In this paper we present the results of attenuation measurements for ultrasound (2–50 MHz) in slurries with concentrations ranging from 0.5 010 to 38 010 (vol). The attenuation is proportional to slurry concentration up to 5 010 (vol) and is predicted by single scattering models. Above approximately 100% concentration, the attenuation is actually lower than expected. For the dilute slurries we find excellent agreement between our measurements and the Allegra-Hawley calculations, and the effects of the particle size distribution are evident in the ultrasonic attenuation spectrum. These ultrasonic data can be inverted to determine the particle size and concentration in aqueous slurries of sub-micron particles.  相似文献   

12.
In-situ X-ray computed tomography (XCT) imaging is employed to investigate the smoldering dynamics of biomass at the sub-millimeter scale. This technique provides simultaneous and spatially-resolved information about the gas temperature and the biomass density, thereby enabling tracking of the pyrolysis and char oxidation fronts. To achieve well-controlled heating and flow conditioning, oak biomass samples are instrumented above a diffusion flame inside a tube, with total oxygen concentrations of 6% and 11% per volume. Experiments are performed on a laboratory XCT system. The flow is diluted with Kr to increase X-ray attenuation in the gas phase thus allowing for simultaneous 3D measurements of sample density and surrounding temperature. XCT scans are acquired every 90 s at a spatial resolution of 135 µm. The high spatial resolution enables the volumetric visualization of the smoldering process that is associated with pyrolysis and char oxidation. These measurements show how the grain structure affects flame stabilization and induces fingering of the pyrolysis front, while crack formation accelerates the char oxidation locally. Evaluations of the sample mass via XCT are compared with load cell measurements, showing good agreement. A low-order model is developed to evaluate the propagation speeds of pyrolysis and oxidation fronts from the X-ray data over time, and comparisons are made with the surface recess speed.  相似文献   

13.
M O Woods  C A Miles 《Ultrasonics》1986,24(5):260-266
The attenuation and speed of ultrasound were measured in homogenates of post-rigor bovine skeletal muscle, and found to increase in proportion to the concentration of muscle. Extrapolation of the data to tissue concentrations yielded an attenuation of 7.5 dB cm-1 at pH 5.7, 20 degrees C and 7.3 MHz. This was close to that measured in the minced tissue, 8.3 dB cm-1, and between values previously recorded across and along the fibres of intact muscle. Corresponding measurements for the speed of ultrasound in homogenates, extrapolated to the native tissue concentration, were: 1555 +/- 9 m s-1 at 0 degree C, 1592 +/- 10 m s-1 at 20 degrees C and 1616 +/- 9 m s-1 at 37 degrees C. These were not significantly different from measurements of minced muscle at the same temperatures. Measurements of the attenuation of 7.3 MHz ultrasound in suspensions of myofibrils indicated that attenuation by the myofibrils caused at least 64% of the attenuation in muscle homogenates at pH 5.7. Re-analysis of the viscous loss arising from relative movement of the myofibrils in their surrounding fluid, indicated that this mechanism could account for no more than 15% of the attenuation in muscle homogenates. Attenuation due to scattering was calculated to be at least two orders of magnitude smaller than that observed in either homogenates or suspensions of myofibrils. It was concluded that the contribution of scattering to the attenuation was small, and that the attenuation was caused by processes involving an absorption of energy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
N de Jong  L Hoff  T Skotland  N Bom 《Ultrasonics》1992,30(2):95-103
Albunex is an ultrasound contrast agent for use in echocardiology and other areas. It is capable of passing the lung circulation after intravenous injection. A theoretical model is developed for some acoustic properties, particularly the scatter and absorption, of this contrast agent, considering the individual microspheres as air bubbles surrounded by a thin shell. The attenuation, the sum of absorption and scatter, of this contrast medium is measured with five transducers to cover the frequency range from 700 kHz to 8.5 MHz. It is concluded that the model correlates well with these acoustic measurements. When Albunex is used intravenously the backscatter enhancement in the left ventricle is caused mainly by the microspheres with diameters between 5 and 8 microns.  相似文献   

15.
Abstract

Ti-6Al-4V alloy with different microstructures was investigated by means of ultrasonic attenuation measurements. Widmanstätten and equiaxed microstructures were obtaining by heat treating a Ti-6Al-4V alloy. These two microstructures were over-aged at 545 °C at different ageing times. In order to find out the factors affecting the variation in the ultrasonic attenuation, the heat-treated samples were examined by optical microscopy and scanning electron microscopy. Based on the theory of ultrasonic attenuation in a solid media, the mechanisms of ultrasonic attenuation in the Ti-6Al-4V alloy with different microstructures were analysed. It was found that in both cases with Widmanstätten and equiaxed microstructures, the ultrasonic attenuation increased with frequency. After ageing, the ultrasonic attenuation was mainly attributed to the scattering loss which included the stochastic and the Rayleigh scattering due to the precipitation of Ti3Al particles homogeneously distributed in the α phase. Data analysis presented in the study showed that ultrasonic attenuation yields more accurate area fractions of precipitates predictions when a polynomial fit is performed.  相似文献   

16.
17.
Richter A  Babick F  Stintz M 《Ultrasonics》2006,44(Z1):e483-e490
The theoretical advantages of ultrasonic attenuation spectroscopy for particle size are currently not fully utilized. Especially in the region of larger particles, there is a lack of experimental confirmation of applicable models which may be used to infer particle sizes from measured attenuation spectra. With the present work, an attempt is made to supply experimental data, obtained with a commercially available ultrasonic attenuation spectrometer, and model calculations, which are based on the resonant scattering theory. It is shown that measured attenuation results for various combinations of disperse and continuous phase for both polydisperse emulsions and suspensions are reproducible by calculation. The approach is further examined for suspensions of porous particles. Here, the resonant scattering approach is combined with the Biot model for poroelasticity to obtain attenuation results with several fractions of titania aggregates, differing in particle size and pore diameter. The results indicate that the theory of resonant scattering is a valid approach if applied to particle size characterization in the large particle limit.  相似文献   

18.
A novel magnetic resonance imaging (MRI) technique which resolves the separate components of the evolving vertical concentration profiles of 3-component non-colloidal suspensions is described. This method exploits the sensitivity of MRI to chemical differences between the three phases to directly image the fluid phase and one of the solid phases, with the third phase obtained by subtraction. 19F spin-echo imaging of a polytetrafluoroethylene (PTFE) oil was interlaced with 1H SPRITE imaging of low-density polyethylene (LDPE) particles. The third phase was comprised of borosilicate glass spheres, which were not visible while imaging the PTFE or LDPE phases. The method is demonstrated by performing measurements on 2-phase materials containing only the floating (LDPE) particles, with the results contrasted to the experimental behaviour of the individual phases in the full 3-phase system. All experiments were performed using nearly monodisperse particles, with initial suspension volume fractions, phi(i), of 0.1.  相似文献   

19.
In this study the attenuation coefficient and dispersion (frequency dependence of phase velocity) are measured using a phase sensitive (piezoelectric) receiver in a phantom in which two temporally overlapping signals are detected, analogous to the fast and slow waves typically found in measurements of cancellous bone. The phantom consisted of a flat and parallel Plexiglas plate into which a step discontinuity was milled. The phase velocity and attenuation coefficient of the plate were measured using both broadband and narrowband data and were calculated using standard magnitude and phase spectroscopy techniques. The observed frequency dependence of the phase velocity and attenuation coefficient exhibit significant changes in their frequency dependences as the interrogating ultrasonic field is translated across the step discontinuity of the plate. Negative dispersion is observed at specific spatial locations of the plate at which the attenuation coefficient rises linearly with frequency, a behavior analogous to that of bone measurements reported in the literature. For all sites investigated, broadband and narrowband data (3-7 MHz) demonstrate excellent consistency. Evidence suggests that the interference between the two signals simultaneously reaching the phase sensitive piezoelectric receiver is responsible for this negative dispersion.  相似文献   

20.
A laboratory extreme ultraviolet reflectometer (EUVR) for the wavelength range from 10 to 16 nm was built at IWS Dresden using a gold target laser pulse plasma (Au-LPP) source. The peak reflectance and the center wavelength are reproduced in relative standard deviation of 0.2 and 0.02%, respectively. In contrast to measurements using linearly polarized s-adjusted synchrotron radiation at PTB, measurements with non-polarized radiation at the EUVR yield systematically lower values for the reflectance due to the smaller reflectance of the p-component at higher angles of incidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号