首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IntroductionAccordingtothedifferenceofindependentvariable,alltheproposedfiniteelementmodelscanbedividedintofiveclasses:1 )Displacementmodel[1- 4],whichassumesdisplacementiscontinuousintheentirefield ;2 )Equilibriummodel[4 ],whichassumesstressisbalanceoneachelem…  相似文献   

2.
Reissner板问题的有限元广义混合法   总被引:4,自引:0,他引:4  
用一般弹性体的广义混合变分原理,导出了适合Reissner板弯曲问题的广义混合变分原理及其有限元广义混合法。算例说明,该有限元模式的刚度可以改变,比常规位移法的精度高,同时还能克服常规Reissner板位移元用于计算薄板时所出现的“剪切自锁”现象,计算结果稳定,最后分析该法能够克服“剪切自锁”现象的原因。  相似文献   

3.
用有限元广义混合法分析不可压缩或几乎不可压缩弹性体   总被引:2,自引:0,他引:2  
不可压缩或几乎不可压缩问题在数学上表现为最小 势能原理中的某些项趋于无穷大,使得有限元方程产生病态。本文给出了不可压缩或几乎不可压缩弹性分析的广义混合变分原理,以此为基础建立了该类问题的有限元广义混合法。该变分原理的泛函中不含有上面这种奇异项,故其有限元方程不会产生病态。算例表明该有限元法可以同时进行可压缩、不可压缩或几乎不可压缩弹性分析,且精度良好;有限元常规位移法及Hermann法是该法的特例。  相似文献   

4.
A numerical algorithm for the solution of advection–diffusion equation on the surface of a sphere is suggested. The velocity field on a sphere is assumed to be known and non‐divergent. The discretization of advection–diffusion equation in space is carried out with the help of the finite volume method, and the Gauss theorem is applied to each grid cell. For the discretization in time, the symmetrized double‐cycle componentwise splitting method and the Crank–Nicolson scheme are used. The numerical scheme is of second order approximation in space and time, correctly describes the balance of mass of substance in the forced and dissipative discrete system and is unconditionally stable. In the absence of external forcing and dissipation, the total mass and L2‐norm of solution of discrete system is conserved in time. The one‐dimensional periodic problems arising at splitting in the longitudinal direction are solved with Sherman–Morrison's formula and Thomas's algorithm. The one‐dimensional problems arising at splitting in the latitudinal direction are solved by the bordering method that requires a prior determination of the solution at the poles. The resulting linear systems have tridiagonal matrices and are solved by Thomas's algorithm. The suggested method is direct (without iterations) and rapid in realization. It can also be applied to linear and nonlinear diffusion problems, some elliptic problems and adjoint advection–diffusion problems on a sphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
4 semi-analytical approach for the dynamic response of general thin plates which employes finite element discretization in space domain and a series of representation in time domain is developed on the basis of Gurtin variational principles. The formulation of time series is also investigated so that the dynamic response of plates with arbitrary shape and boundary constraints can be achieved with adequate accuracy.Project supported by the National Natural Science Foundation of China  相似文献   

6.
Operator splitting algorithms are frequently used for solving the advection–diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection–diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
In the present paper, a mesh adaptation process for solving the advection equation on a fully unstructured computational mesh is introduced, with a particular interest in the case it implicitly describes an evolving surface. This process mainly relies on a numerical scheme based on the method of characteristics. However, low order, this scheme lends itself to a thorough analysis on the theoretical side. It gives rise to an anisotropic error estimate which enjoys a very natural interpretation in terms of the Hausdorff distance between the exact and approximated surfaces. The computational mesh is then adapted according to the metric supplied by this estimate. The whole process enjoys a good accuracy as far as the interface resolution is concerned. Some numerical features are discussed and several classical examples are presented and commented in two or three dimensions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
R. J. Knops  L. E. Payne 《Meccanica》1996,31(5):597-606
A first order differential inequality is derived for the cross-sectional energy flux of the solution to the equation of constant mean curvature defined on a three-dimensional prismatic cylinder of convex cross-section. Integration of the inequality yields estimates which are employed to prove for large values of the axial variable that the solution in measure either grows at least algebraically or decays at most exponentially to the lower dimensional cross-sectional solution. This result generalises that previously obtained by the authors for the corresponding two-dimensional problem.
Sommario Si dimostra una disequazione differenziale del primo ordine per il flusso di energia attraverso la sezione trasversale della soluzione dell' equazione della curvatura media costante definita in un cilindro prismatico tridimensionale a sezione trasversale convessa. L'integrazione della disuguaglianza fornisce stime che sono impiegate a provare che, per grandi valori della variabile assiale la soluzione in misura o cresce almeno algebricamente o decade al più esponenzialmente alla soluzione per la sezione trasversale più piccola. Questo risultato generalizza quello ottenuto in precedenza dagli autori per il corrispondente problema bidimensionale.
  相似文献   

9.
In the present paper, the finite deformation and stress analysis for a hyperelastic rectangular plate with a center void under a uniaxial extension is studied. In order to consider the effect of the existence of the void on the deformation and stress of the plate, the problem is reduced to the deformation and stress analysis for a hyperelastic annular plate and its approximate solution is obtained from the minimum potential energy principle. The growth of the cavitation is also numerically computed and analysed.Project supported by the National Natural Science Foundation of China  相似文献   

10.
非饱和多孔介质有限元分析的基本控制方程与变分原理   总被引:2,自引:1,他引:2  
张洪武 《力学季刊》2002,23(1):50-58
本文在对问题研究现状进行阐述的基础上较系统地给出了骨架可变形非饱和多孔介质的全耦合分析模型,模型中考虑了孔隙气体,水(油)流动对介质力学性能的影响,多孔介质的饱和度,渗透系数与毛吸压力的关系,由实验给出,所导出的控制方程以固体骨架的位移与孔隙流体压力为基本未知量,由于问题的非自共轭特征,文中构造了非饱和介质动力问题的参数变分形式,并在此基础上给出有限元离散方程。  相似文献   

11.
The density dependent flow and transport problem in groundwater is solved numerically by means of a mixed finite element scheme for the flow equation and a mixed finite element-finite volume time-splitting based technique for the transport equation. The proposed approach, spatially second order accurate, is used to address the issue of grid convergence by solving on successively refined grids the salt lake problem, a physically unstable downward convection with formation of fingers. Numerical results indicate that achievement of grid convergence is problematic due to ill-conditioning arising from the strong nonlinearities of the mathematical model.  相似文献   

12.
本文将薄板弯曲问题的4阶微分方程,化为两个2阶微分方程,并提出了一个与之相应的三变量广义变分原理,然后从这个原理出发,进行有限元求解。该方法不但成功地将C~1连续性条件降为C~0问题,而且降低了板单元的自由度数目,同时单元的精度也是令人满意的。  相似文献   

13.
引入了一种求解波导本征值问题的高效而精确算法-比例边界有限元方法SBFEM (Scaled Boundary Finite Element Method).该方法的一个特点是只需在边界上进行离散,问题降低一维,使计算工作量大大减少;另一特点是所建立的控制方程为二阶常微分方程,可以解析地求解,使计算精度得到了保证.论文利用变分原理并通过比例边界坐标变换,推导了TE波和TM波波导的比例边界有限元频域方程以及波导动剐度方程,同时给出了波导动刚度矩阵的连分式解形式,通过引入辅助变量进一步得出波导特征值方程并求出波导本征值.以矩形、L形波导和叶型加载矩形波导的本征问题分析为例,通过与解析解及其他数值方法比较,结果表明,此方法具有精度高、计算工作量小的优点,而且随着连分式阶数增加收敛速度快.进一步分析了一类角切四脊正方形波导的传输特性.  相似文献   

14.
将参变量变分原理引入铁电问题。对一类借用了经典弹塑性理论中的概念和方法的多轴铁电模型建立基于Helmholtz自由能的参变量变分原理,可以有效处理传统变分原理中由非关联流动法则或屈服面不考虑材料系数变化所引起的切线模量非对称困难。相应于参变量变分原理,引入参数二次规划算法,可获得具有可靠数值稳定性的一套铁电算法。将该算法应用于一个具体的铁电模型,数值计算结果表明本文方法的有效性。  相似文献   

15.
本文中提出了一种求解有限长径向滑动轴承非线性油膜力的近似解析方法.在滑动轴承-转子系统非线性动力行为分析中,油膜力计算模型通常采用"π"油膜假设,但是,实际工况中油膜的存在区域并非是"π"区域,运行时油膜中出现气穴,破裂成条纹状(即具有Reynolds边界条件).本文中的近似解析方法采用Reynolds边界条件,基于变分原理,运用分离变量法求解油膜的压力分布,其中油膜压力的周向分离函数通过无限长轴承的油膜压力分布获得,油膜的破裂终止位置角通过连续条件确定,轴向分离函数运用变分原理并结合周向函数求得.计算结果表明:本文中提出的方法和有限元方法的结果吻合得很好.在此基础上,分析了一些轴承参数对油膜压力分布的影响.  相似文献   

16.
A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.  相似文献   

17.
We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two‐dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi‐discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo‐time step requires the solution of a sparse linear system for the flow variables. In this study, a non‐overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson‐type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The linear problem of high-frequency oscillations of a horizontal cylinder floating at the interface of a two-layer fluid was solved numerically using the boundary element method. Added masses are calculated for circular and elliptic cylinders.  相似文献   

19.
We study the asymptotic behavior of solutions to an equation describing non-linear vibration of a string with viscosity. In the case when the string is unstretched (the degenerate case), we determine the decay order of solutions by investigating the dynamics near an infinite-dimensional center manifold. Moreover, we classify the asymptotic behavior of all solutions from a dynamical systems point of view. We also deal with the case where the string is stretched (the nondegenerate case).  相似文献   

20.
A comparison is made between the Arnoldi reduction method and the Crank–Nicolson method for the integration in time of the advection–diffusion equation. This equation is first discretized in space by the classic finite element (FE) approach, leading to an unsymmetric first‐order differential system, which is then solved by the aforementioned methods. Arnoldi reduces the native FE equations to a much smaller set to be efficiently integrated in the Arnoldi vector space by the Crank–Nicolson scheme, with the solution recovered back by a standard Rayleigh–Ritz procedure. Crank–Nicolson implements a time marching scheme directly on the original first‐order differential system. The computational performance of both methods is investigated in two‐ and three‐dimensional sample problems with a size up 30 000. The results show that in advection‐dominated problems less then 100 Arnoldi vectors generally suffice to give results with a 10−3–10−4 difference relative to the direct Crank–Nicolson solution. However, while the CPU time with the Crank–Nicolson starts from zero and increases linearly with the number of time steps used in the simulation, the Arnoldi requires a large initial cost to generate the Arnoldi vectors with subsequently much less expensive dynamics for the time integration. The break‐even point is problem‐dependent at a number of time steps which may be for some problems up to one order of magnitude larger than the number of Arnoldi vectors. A serious limitation of Arnoldi is the requirement of linearity and time independence of the flow field. It is concluded that Arnoldi can be cheaper than Crank–Nicolson in very few instances, i.e. when the solution is needed for a large number of time values, say several hundreds or even 1000, depending on the problem. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号