首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-氟胞嘧啶气相及水助质子转移异构化的理论研究   总被引:3,自引:0,他引:3  
采用密度泛函B3LYP/6-311G**方法,对6种5-氟胞嘧啶异构体孤立分子的稳定性及质子转移引起的酮式-烯醇式、氨基式-亚胺式互变异构反应机理进行了计算研究,获得了零点能、吉布斯自由能及质子转移过程的反应焓、活化能、活化吉布斯自由能和速率常数等参数.计算结果表明,气相中烯醇-氨基式FC4是最稳定的异构体.分子内质子转移设计了FC1→FC2和FC1→FC6两条通道,分别标记为P(1)和P(2),各通道速控步骤的活化能和速率常数分别为155.9 kJ·mol-1,4.70×10-15 s-1和173.1 kJ·mol-1,1.41×10-18 s-1.水助催化时,相应通道P(3) 和P(4) 速控步骤的活化能和速率常数分别为51.0 kJ·mol-1,1.41×103 s-1和88.2 kJ·mol-1,4.53×10-3 s-1.可见,水分子的加入极大地降低了质子转移的活化能垒.另外发现,水分子参与形成协同的双质子转移机理比水助单质子转移机理更利于降低活化能垒.  相似文献   

2.
We demonstrate through quantum chemical calculations that the keto-enol tautomerization of malonic acid can be catalyzed by the two tautomers of malonic acid itself. This self-catalyzed process proceeds with a relatively low barrier (Gibbs energy ca. 13 kcal/mol in gas phase, 20 kcal/mol in aqueous phase), and involves the concerted transfer of two protons between the substrate and the carboxylic acid functionality of the malonic acid catalyst. This mechanism is expected to compete with the proton relay mechanism currently favored to explain the tautomerization of malonic acid in aqueous media. Malonic acid is an important constituent of secondary organic aerosol where the present chemistry may play a role in determining chemical composition.  相似文献   

3.
The base tautomerization processes of uracil/5-bromouracil were investigated in a microcosmic environment with both H2O and Na+ (W-M environment). It was found that uracil was more stable in the W-M environment than in the microcosmic environment with only water, which suggested that the metal ions and water work cooperated to maintain the classical nucleic acid bases. However, 5-bromouracil, a chemical mutagen, was found to be less stable than uracil in the W-M environment. Why the 5-bromouracil is easier to tautomerize and therefore induce gene mutation was explained to some extent. Further research revealed that the water molecule would assist the tautomerization in the W-M environment. However, the metal ions in different regions play absolutely opposite roles: in one region, the metal ions can prevent the base from tautomerizing, whereas in another region, the metal ion can assist the tautomerization process. Furthermore, from the viewpoint of ionization of the base, it seems BrU has a stronger tendency to lose the proton at N3, which is an intrinsic consequence of the bromine atom and is not affected by the metal cation.  相似文献   

4.
The role of water in a multicomponent domino reaction (MCR) involving styrene, 2,4-pentanedione, and formaldehyde was studied. Whereas anhydrous conditions produced no reaction, the MCR successfully proceeded in the presence of water, affording the targeted dihydropyran derivatives with good yield. The mechanism of this MCR (Knoevenagel hetero Diels-Alder sequence) was studied with and without explicit water molecules using the SMD continuum solvation model in combination with the B3LYP density functional and the 6-311++G** basis set to compute the water and acetone (aprotic organic solvent) solution Gibbs free energies. In the Knoevenagel step, we found that water acted as a proton relay to favor the formation of more flexible six-membered ring transition state structures both in concerted (direct H(2)O elimination) and stepwise (keto-enol tautomerization and dehydration) pathways. The inclusion of a water molecule in our model resulted in a significant decrease (-8.5 kcal mol(-1)ΔG(water)(?)) of the direct water elimination activation barrier. Owing to the presence of water, all chemical steps involved in the MCR mechanism had activation free energies barriers lower than 39 kcal mol(-1) at 25 °C in aqueous solvent (<21 kcal mol(-1) ZPE corrected electronic energies barriers). Consequently, the MCR proceeded without the assistance of any catalyst.  相似文献   

5.
Density functional theory and MP2 methods have been employed to study of proton transfer reaction in annular tautomerization of tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione (glycoluril). Ten different tautomers are possible for the tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione. For all molecules, the Gibbs free energy at 0 and 298 K was estimated. In addition variation of dipole moments and charges on atoms are studied in the gas phase and solution, the specific solvent effects with addition of one molecule of water near the electrophilic centers of tautomer and the NBO charges of atoms were investigated. NBO analysis shows that there is a strong interaction between nitrogen lone pairs and double bonds.  相似文献   

6.
Proton transfer reaction is studied for 1H-pyrrolo[3,2-h]quinoline-water complexes (PQ-(H(2)O)(n), n = 0-2) in the ground and the lowest excited singlet states at the density functional theory (DFT) level. Cyclic hydrogen-bonded complexes are considered, in which water molecules form a bridge connecting the proton donor (pyrrole NH group) and acceptor (quinoline nitrogen) atoms. To understand the effect of the structure and length of water bridges on the excited-state tautomerization in PQ, the potential energy profile of the lowest excited singlet state is calculated adiabatically by the time-dependent DFT (TDDFT) method. The S(0) --> S(1) excitation of PQ is accompanied by significant intramolecular transfer of electron density from the pyrrole ring to the quinoline fragment, so that the acidity of the N-H group and the basicity of the nitrogen atom of the quinoline moiety are increased. These excited-state acid-base changes introduce a driving force for the proton transfer reaction. The adiabatic TDDFT calculations demonstrate, however, that the phototautomerization requires a large activation energy in the isolated PQ molecule due to a high energy barrier separating the normal form and the tautomer. In the 1:1 cyclic PQ-H(2)O complex, the energy barrier is dramatically reduced, so that upon excitation of this complex the tautomerization can occur rapidly in one step as concerted asynchronous movements of the two protons assisted by the water molecule. In the PQ-(H(2)O)(2) solvate two water molecules form a cyclic bridge with sterically strained and unfavorable hydrogen bonds. As a result, some extra activation energy is needed for initiating the proton dislocation along the longer hydrogen-bond network. The full tautomerization in this complex is still possible; however, the cooperative proton transfer is found to be highly asynchronous. Large relaxation and reorganization of the hydrogen-bonded water bridge in PQ-(H(2)O)(2) are required during the proton translocation from the pyrrole NH group to the quinoline nitrogen; this may block the complete tautomerization in this type of solvate.  相似文献   

7.
水对5-氟尿嘧啶质子转移影响规律的研究   总被引:4,自引:3,他引:4  
采用密度泛函理论(DFT)B3LYP方法, 在6-311++G(d, p)基组上研究了由质子转移引起的5-氟尿嘧啶(5-FU)的异构化反应. 共研究了38个含水与不含水的构型, 其中包括15个过渡态结构. 研究发现, 在5-氟尿嘧啶周围存在两类不同的区域, 在其中一类区域中, 水分子能促进质子转移的发生;而在另一类区域中, 水分子却能阻碍质子转移的发生. 通过与尿嘧啶质子转移过程相比较, 发现在各种情况下5-氟尿嘧啶异构化为烯醇式的几率均比尿嘧啶的大, 在一定程度上解释了为什么5-氟尿嘧啶具有优良抗癌作用的同时具有一定的毒副作用.  相似文献   

8.
The tautomerization reaction mechanism has been reported between N7(H) and N9(H) of isolated and monohydrated 2,6‐dithiopurine using B3LYP/6‐311+G(d,p). The isodensity polarized continuum model (IPCM) in the self‐consistent reaction field (SCRF) method is employed to account for the solvent effect of water on the tautomerization reaction activation energies. The results show that the two pathways P(1) (via the carbene intermediate I1) and P(2) (via the sp3‐hybrid intermediate I2) are found in intramolecular proton transfer, and each pathway is composed by two primary steps. The calculated activation energy barriers of the rate‐determining steps in isolated 2,6‐dithiopurine N7(H)→N9(H) tautomerism are 308.2 and 220.0 kJ·mol?1 in the two pathways, respectively. Interestingly, in one‐water molecule catalyst, it dramatically lowers the N7(H)→N9(H) energy barriers by the concerted double proton transfer mechanism in P(1), favoring the formation of 2,6‐dithiopurine N9(H). However, the single proton transfer mechanism assisted with out‐of‐plane water in the first step of P(2) increases the activation energy barrier from 220.0 to 232.3 kJ·mol?1, while the second step is the out‐of‐plane concerted double proton transfer mechanism, indicating that they will be less preferable for proton transfer. Additionally, the results also show that all the pathways are put into the aqueous solution, and the activation energy barriers have no significant changes. Therefore, the long‐range electrostatic effect of bulk solvent has no significant impact on proton transfer reactions and the interaction with explicit water molecules will significantly influence proton transfer reactions.  相似文献   

9.
5-Aminolevulinic acid (5ALA) is the key synthetic building block in protoporphyrin IX (PpIX), the heme chromophore in mitochondria. In this study density functional theory calculations were performed on the tautomers of 5ALA and the tautomerization reaction mechanism from its enolic forms (5-amino-4-hydroxypent-3-enoic acid and 5-amino-4-hydroxypent-4-enoic acid) to the more stable 5ALA. The hydrated form 5-amino-4,4-dihydroxypentanoic acid was also studied. The lowest energy pathway of 5ALA tautomerization is by means of autocatalysis, in that an oxygen of the carboxylic group transfers the hydrogen atom as a "crane", with an activation energy of approximately 15 kcal/mol. This should be compared to the barriers of about 35 kcal/mol for water assisted tautomerization, and 60 kcal/mol for direct hydrogen transfer. For hydration of 5ALA, the water catalyzed activation barrier is found to be approximately 35 kcal/mol, approximately 5 kcal/mol lower than direct hydration.  相似文献   

10.
将拉曼光谱和密度泛函理论(DFT)计算结合能够把拉曼谱峰和分子结构及分子间氢键作用之间的变化联系起来,反映分子周围的结构信息.本文通过理论计算水分子和硫脲形成复合物的拉曼光谱,并结合实验报道的拉曼光谱,探究硫脲基频对分子局域结构的依赖性.通过轨道分析,发现水分子的氢键作用可以引起硫脲的前线轨道对易,这将影响到硫脲的拉曼光谱性质.最后计算也表明在中性水溶液中由于大的正Gibbs自由能变,硫脲不易发生异构转变.  相似文献   

11.
将拉曼光谱和密度泛函理论(DFT)计算结合能够把拉曼谱峰和分子结构及分子间氢键作用之间的变化联系起来, 反映分子周围的结构信息. 本文通过理论计算水分子和硫脲形成复合物的拉曼光谱, 并结合实验报道的拉曼光谱, 探究硫脲基频对分子局域结构的依赖性. 通过轨道分析, 发现水分子的氢键作用可以引起硫脲的前线轨道对易, 这将影响到硫脲的拉曼光谱性质. 最后计算也表明在中性水溶液中由于大的正Gibbs 自由能变, 硫脲不易发生异构转变.  相似文献   

12.
The excited-state proton-transfer dynamics of 7-azaindole occurring in the water nanopools of reverse micelles has been investigated by measuring time-resolved fluorescence spectra and kinetics, as well as static absorption and emission spectra, with varying water content and isotope. 7-Azaindole molecules are found to exist in the bound-water regions of reverse micelles. The rate constant and the kinetic isotope effect of proton transfer are smaller than those in bulk water although both increase with the size of the water nanopool. The retardation of proton transfer in the bound regions is attributed to the increased free energy of prerequisite solvation to form a cyclically H-bonded 1:1 7-azaindole/water complex.  相似文献   

13.
For the purpose of investigating the tautomerism from glycinamide (G) to glycinamidic acid (G*) induced by proton transfer, we carried out a study of structural interconversion of the two tautomers and the relative stabilizing influences of water during the tautomerization process. Throughout the study, we used density functional theory (DFT) calculations at the B3LYP/6-311++G** level of theory, also considering the correction functions, that is, the effect of basis set superposition error (BSSE). Totally, 42 geometries, including fourteen important transition states, were optimized, and their geometric parameters have also been discussed in detail. Water molecules were gradually put in three different regions in the vicinity of G and its tautomer G*. The calculation results indicate that water in two of these regions can protect G from tautomerizing to G*, while in another region, water can assist in the tautomerism; this reveals that water molecules have stabilization and mutagenicity effects for G simultaneously.  相似文献   

14.
The water-assisted tautomerization of glycine has been investigated at the B3LYP/6-31+G** level using supermolecules containing up to six water molecules as well as considering a 1:1 glycine-water complex embedded in a continuum. The conformations of the tautomers in this mechanism do not display an intramolecular H bond, instead the functional groups are bridged by a water molecule. The replacement of the intramolecular H bond by the bridging water reduces the polarity of the N-H bond in the zwitterion and increases that of the O-H bond in the neutral, stabilizing the zwitterion. Both the charge transfer effects and electrostatic interactions stabilize the nonintramolecularly H-bonded zwitterion conformer over the intramolecularly hydrogen bonded one. The nonintramolecularly H-bonded neutral is favored only by charge transfer effects. Although there is no strong evidence whether the intramolecularly hydrogen bonded or non hydrogen bonded structures are favored in the bulk solution represented as a dielectric continuum, it is likely that the latter species are more stable. The free energy of activation of the water-assisted mechanism is higher than the intramolecular proton transfer channel. However, when the presumably higher conformational energy of the zwitterion reacting in the intramolecular mechanism is taken into account, both mechanisms are observed to compete. The various conformers of the neutral glycine may form via multiple proton transfer reactions through several water molecules instead of a conformational rearrangement.  相似文献   

15.
任宏江 《化学通报》2015,78(9):815-819
采用量子化学密度泛函B3LYP/6-31G(d,p)和M06-2X/6-311++G(d,p)方法对黄嘌呤两种酮式异构体X(1,3,7)与X(1,3,9)间质子转移引起的互变异构反应机理进行了计算研究,获得了异构化反应过程的反应焓﹑活化吉布斯自由能和质子转移反应的速率常数等参数。水相计算采用极化连续(PCM)模型。结果表明,由于可能的氢迁移顺序差异,分子内由X(1,3,7)向X(1,3,9)异构化可能共有16条反应通道,涉及11个中间体和20个过渡态,其主反应通道速控步骤的活化吉布斯自由能为183.10k J/mol,速率常数为5.17×10-20s-1,其余各通道速控步骤活化吉布斯自由能均较高,而且整体水溶剂效应不利于质子转移的发生。  相似文献   

16.
The free energy profiles for proton transfer along the oriented water file inside the gramicidin A channel were calculated. An original implementation of the rigid-body molecular dynamics method was used for describing the peptide groups of the channel and outer water molecules. The inner water wire was simulated using the PM6 force field parameters, which adequately describe the formation and cleavage of chemical and hydrogen bonds in water molecules. Different mechanisms of proton transfer through the gramicidin A channel were considered, namely, proton H+ translocation, transfer of the anion defect OH?, and reorientation of the water file inside the channel. To facilitate parallel calculations of trajectories, the reaction coordinate was divided into segments, and the results were combined by the weighted histogram analysis method. The first two processes, H+ and OH? transfers, were shown to be barrierless. Only the stage of reorientation of the water file inside the channel has an energy barrier.  相似文献   

17.
The prototropic tautomerism of 2-, 4-selenouracil and 2,4-diselenouracil has been studied using density functional theory (DFT) methods, at the B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G(d,p) level. The relative stability order of selenouracil tautomers does not resemble that of uracil tautomers, but it is similar to that of thiouracils, even though the energy gaps between the different tautomers of selenouracils are smaller than for thiouracils. The tautomerism activation barriers are high enough as to conclude that only the oxo-selenone or the diselenone structures should be found in the gas phase. The specific interaction with one water molecule reduces these barriers by a half, but still the oxo-selenone form is always the most stable tautomer. The addition of a second water molecule has a relatively small effect, as well as bulk effects, evaluated by means of a continuum-polarized model. For isolated 2- and 4-selenouracils, the more favorable tautomerization process corresponds to a hydrogen transfer towards the selenium atom, the activation barriers for transfer towards the oxygen atom being much higher. This situation changes when specific and bulk effects are included, and the latter process becomes the more favorable one. For 2,4-diselenouracil the more favorable tautomerization, in the gas phase, corresponds to the H shift from N1 to the Se atom at C2, while solvation effects favor the transfer from N3 to the Se atom at C4.  相似文献   

18.
张慧  薛英  谢代前  鄢国森 《化学学报》2005,63(9):791-796
采用从头算方法在MP2/6-31+G*水平上研究了2-羟基咪唑分子在孤立分子和一水合物的异构体的相对稳定性和可能的质子迁移反应, 分析了一个水分子的参与对2-羟基咪唑分子异构体的相对稳定性和质子迁移速率的影响, 采用Monte Carlo模拟方法研究了反应体系在水溶液中反应的溶剂化效应. 结果表明: 2-羟基咪唑分子的孤立分子和一水合物的最稳定异构体相同, 都为酮式. 直接质子迁移反应在水溶液中活化能垒有轻微增加, 但产物能量得到降低; 水助催化质子迁移反应在水溶液中的活化能垒和产物能量都得到明显降低. 综合气相和水相的计算结果, 2-羟基咪唑水助催化的质子迁移反应较易进行, 且在水溶液中进行容易, 可以很容易被实验观察到.  相似文献   

19.
The water-catalyzed hydrolysis reaction of carbon disulfide (CS(2)) has been investigated at the levels of HF and MP2 with the basis set of 6-311++G(d,p) using the combined supramolecular/continuum models, in which up to six water molecules are involved in the hydrolysis and the effect of water bulk solvent is taken into account according to the polarizable continuum model (PCM). The activation Gibbs free energies in water solution, DeltaG(sol) (not equal) (298 K), for the rate-determining steps of one up to six water hydrolyses are 247.9, 184.2, 152.3, 141.8, 134.4, and 118.9 kJ/mol, respectively. The most favorable hydrolysis path of CS(2) involves a sort of eight-membered ring transition structure formed by six water molecules, among which three water molecules are not involved in the proton transfer, two near to the nonreactive sulfur atom, and one below the parent carbon disulfide. This suggests that the hydrolysis of CS(2) can be mediated with the water molecule(s) and be significantly facilitated by the cooperative effects of the water molecule(s) in the nonreactive region. The catalytic effects of water molecule(s) due to the alleviation of ring strain in the proton transfer process may result from the synergistic effects of rehybridization and charge reorganization from the prereaction complex to the rate-determining transition state structure induced by water molecule(s). PCM solvation models could significantly lower the rate-determining activation Gibbs free energies by 20-38 kJ/mol when two up to six explicit water molecules involved in the neutral hydrolysis of CS(2).  相似文献   

20.
The Beckmann rearrangement of acetone oxime promoted by proton transfers in the supercritical water has been investigated by means of the hybrid quantum mechanical/molecular mechanical approach combined with the theory of energy representation (QM/MM-ER) recently developed. The transition state (TS) structures have been explored by ab initio calculations for the reaction of hydrated acetone oxime on the assumption that the reaction is catalyzed by proton transfers along the hydrogen bonds connecting the solute and the solvent water molecules. Up to two water molecules have been considered as reactants that take part in the proton transfers. As a result of the density functional theory calculations with B3LYP functional and aug-cc-pVDZ basis set, it has been found that participation of two water molecules in the reaction reduces the activation free energy by -12.3 kcal/mol. Furthermore, the QM/MM-ER simulations have revealed that the TS is more stabilized than the reactant state in the supercritical water by 2.7 kcal/mol when two water molecules are involved in the reaction. Solvation free energies of the reactant and the TS have been decomposed into terms due to the electronic polarization of the solute, electron density fluctuation, and others to elucidate the origin of the stabilization of the TS as compared with the reactant. It has been revealed that the promotion of the chemical reaction due to the hydration mainly originates from the interaction between the nonpolarized solute and the solvent water molecules at the supercritical state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号