首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We study an upper bound on masses of additional scalar bosons from the electroweak precision data and theoretical constraints such as perturbative unitarity and vacuum stability in the two-Higgs-doublet model taking account of recent Higgs boson search results. If the mass of the Standard-Model-like Higgs boson is rather heavy and is outside the allowed region by the electroweak precision data, such a discrepancy should be compensated by contributions from the additional scalar bosons. We show the upper bound on masses of the additional scalar bosons to be about 2 (1) TeV for the mass of the Standard-Model-like Higgs boson to be 240 (500) GeV.  相似文献   

2.
The production of a standard model Higgs boson in association with a top quark pair at the upcoming high luminosity run ( 15 fb(-1) integrated luminosity) of the Fermilab Tevatron ( square root of s = 2.0 TeV) is revisited. For Higgs masses below 140 GeV we demonstrate that the production cross section times branching ratio for H-->bb macro decays yields a significant number of events and that this mode is competitive with and complementary to the searches using pp(macro) -->WH,ZH associated production. For higher mass Higgs bosons the H-->W(+)W(-) decays are more difficult but have the potential to provide a few spectacular events.  相似文献   

3.
《Nuclear Physics B》1988,307(3):445-475
We give explicit formulae for the decays of the Higgs bosons of the minimal supersymmetric model to neutralinos and charginos. The important features of these decays are illustrated and their phenomenological implications discussed. Particular attention is given to the decays of heavy Higgs bosons (with masses larger than mZ) which can only be observed at a future supercollider. When phase-space allowed, Higgs decays into neutralinos and charginos are at least as important as, and often dominate, other types of Higgs decay modes, such as WW, ZZ, and heavy quark (or lepton) pairs.  相似文献   

4.
In a class of extended Higgs structures containing two Higgs doublets, the decays of the Weinberg-Salam Higgs particle might be significantly different from those in the standard model because it has large branching ratios to decay into light Higgs bosons. We discuss the decays of the Weinberg-Salam Higgs particle with mass range from 7 GeV up to 1 TeV.  相似文献   

5.
The production of Higgs bosons in the mass range of 200 GeV/c2<M H <1TeV/c 2 ate + e ? super colliders is studied. We consider the possibilities to detect Higgs bosons via their decays into vector boson pairs. Single particle distributions of vektor bosons arising from this decay are compared with background reactions. We find, that the signal of Higgs bosons with masses up to 60- GeV/c2 should be visible over the background already at \(\sqrt s = 1\) TeV, provided that the vektor bosons can be identified via their hadronic decay modes.  相似文献   

6.
The data collected by the OPAL experiment at GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54 pb. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, GeV and GeV are obtained for , no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range is excluded for minimal scalar top mixing and GeV. More general scans of the MSSM parameter space are also considered. Received: 27 October 1998 / Published online: 19 February 1999  相似文献   

7.
A selection of di-lepton events with significant missing transverse momentum has been performed using a total data sample of 237.4 pb at centre-of-mass energies of approximately 183 GeV and 189 GeV. The observed numbers of events – 78 at 183 GeV and 301 at 189 GeV – are consistent with the numbers expected from Standard Model processes, which arise predominantly from production with both W bosons decaying leptonically. This topology is also an experimental signature for the pair production of new particles that decay to a charged lepton accompanied by one or more invisible particles. Discrimination techniques are described that optimise the sensitivity to particular new physics channels. No evidence for new phenomena is apparent. Upper limits on the production cross-section times branching ratio squared for sleptons and for leptonically decaying charginos and charged Higgs are presented in a manner intended to minimise the number of model assumptions. Assuming a 100% branching ratio for the decay , where is the lightest neutralino, we exclude at 95% CL: right-handed smuons with masses below 82.3 GeV for GeV and right-handed staus with masses below 81.0 GeV for GeV. Right-handed selectrons are excluded at 95% CL for masses below 87.1 GeV for GeV, within the framework of the Minimal Supersymmetric Standard Model assuming GeV and . Charged Higgs bosons, H, are excluded at 95% CL for masses below 82.8 GeV, assuming a 100% branching ratio for the decay . Received: 6 September 1999 / Published online: 6 April 2000  相似文献   

8.
We show that the use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and/or CMS can provide important information on the Higgs sector of the MSSM. We analyse central exclusive production of the neutral -even Higgs bosons h and H and their decays into bottom quarks, τ leptons and W bosons in various MSSM benchmark scenarios. Using plausible estimates for the achievable experimental efficiencies and the relevant background processes, we find that the prospective sensitivity of the diffractive Higgs production will allow one to probe interesting regions of the MA–tanβ parameter plane of the MSSM. Central exclusive production of the -even Higgs bosons of the MSSM may provide a unique opportunity to access the bottom Yukawa couplings of the Higgs bosons up to masses of MH≲ 250 GeV. We also discuss the prospects for identifying the -odd Higgs boson, A, in diffractive processes at the LHC.  相似文献   

9.
This paper describes flavour independent searches for hadronically decaying neutral Higgs bosons in the data collected by the DELPHI experiment at LEP, at centre-of-mass energies between 189 and 209 GeV. The collected data-set corresponds to an integrated luminosity of around 610 pb-1. The and processes are considered, with direct Higgs boson decays into hadrons. No evidence for Higgs boson production is found, and cross-section limits are set as a function of the Higgs boson masses. No explicit assumptions are made on the underlying physics beyond the Standard Model, allowing interpretation of the data in a large class of models. Received: 11 January 2005, Revised: 24 June 2005, Published online: 20 September 2005  相似文献   

10.
A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb−1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95% confidence level, independent of the decay branching ratio Br(H±→τν).  相似文献   

11.
The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3σ beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c2. At the upgraded TeVatron and at LHC the search for the Higgs boson will continue. At TeVatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb—1. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed.  相似文献   

12.
We study the upper limits on the mass of the lightest and second lightest CP even Higgs bosons in the (M + 1)SSM, the MSSM extended by a gauge singlet. The dominant two loop contributions to the effective potential are included, which reduce the Higgs masses by GeV. Since the coupling R of the lightest Higgs scalar to gauge bosons can be small, we study in detail the relations between the masses and couplings of both lightest scalars. We present upper bounds on the mass of a ”strongly” coupled Higgs (R < 1/2) as a function of lower experimental limits on the mass of a ”weakly” coupled Higgs (R < 1/2). With the help of these results, the whole parameter space of the model can be covered by Higgs boson searches. Received: 7 September 1999 / Published online: 12 July 2002  相似文献   

13.
We calculate the new physics contributions to the branching ratios of the rare decays B→Xsl+l(l=e,μ) induced by neutral Higgs bosons loop diagrams in the top quark two-Higgs-doublet model (T2HDM). From the numerical calculations, we find that (a) the neutral Higgs boson's correction to B→Xsl+l decays interferes constructively with its standard model counterpart, but small in magnitude; (b) the neutral Higgs contributions to the branching ratio of B→Xsl+l decay can be neglected safely if their masses are larger than 100GeV and tanβ≤40.  相似文献   

14.
We present a general calculation of the two-body decay rates of the nucleon, for the most general form of four-fermion ΔB = ΔL operators, in the framework of the SU(6) non-relativistic quark model. We have applied our general formulas to Higgs mediated decays in conventional and in supersymmetric SU(5) models. Lower bounds upon the exchanged particles masses are given. We point out that the hierarchies of branching ratios in decays mediated by Higgs bosons are different from those of gauge boson decay modes (in the former case, neutrinos modes are dominant). We give, in conclusion, an experimental way to distinguish non-supersymmetric GUTs from supersymmetric ones, if the nucleon decays via Higgs bosons.  相似文献   

15.
In the framework of T2HDM, we calculated the new physics contributions involving neutral Higgs bosons to the branching ratios of B_(s,d)~0→e~+e~-(e=e,μ) decays. Comparing the theoretical predictions with the experimental upper-limits, we found that (a) The data of Br(B_d~0→e~+e~-)give the upper bound on tanβ: tanβ≤ 22, while Br(B_s~0→e~+e~-)give tanβ≤12 for fixed δ = 0°, m_H+=350 GeV, m_Ho = 160 GeV, m_Ho= 115 GeV and m_Ao=120 GeV; (b) A light neutral Higgs boson mass m_Ho (m_Ao) less than 50 GeV (120 GeV) is excluded by the data of branching ratios for B_(s,d)~0→e~+e~-(e=μ) decays with tanβ=10; (c) The bounds on m_(h~0) and tanβ, or m_(A~0) and tanβ are strongly correlated: a smaller (larger) tanβ means a lighter (heavier) neutral Higgs boson.  相似文献   

16.
Pauline Gagnon 《Pramana》2004,62(3):545-550
Ever since the center-of-mass energy was increased in 1995 above the Zℴ resonance, the four LEP experiments (ALEPH, DELPHI, OPAL and L3) have renewed their effort to search for the Higgs boson. Data taking ended in the year 2000 with about 130 pb−1 of data collected per experiment above 206 GeV ine + e −1 collisions but the data analysis is still very active. Most recently, the wealth of theoretical models and predictions has stimulated new analyses and model interpretations which go beyond the standard model and minimal supersymmetric standard model. These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for ‘fermiophobic’ Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and present the LEP combined results when they exist.  相似文献   

17.
We show that the standard-model Higgs boson mass mh is correlated with the spectral index of density perturbation ns in the inflation scenario with the inflaton being identified with the B-L Higgs boson. The Higgs boson mass ranges from mh?120 GeV to 140 GeV for ns?0.95-0.96. In particular, as ns approaches to 0.96, the Higgs mass is predicted to be in the range of 125 GeV to 140 GeV in the case of relatively light gauginos, and 120 GeV to 135 GeV in the case where all SUSY particle masses are of the same order. This will be tested soon by the LHC experiment and the Planck satellite. The relation is due to the PeV-scale supersymmetry required by the inflationary dynamics. We also comment on the cosmological implications of our scenario such as non-thermal leptogenesis and dark matter.  相似文献   

18.
This paper describes a topological search for an invisibly decaying Higgs boson, H, produced via the Bjorken process (e+e-→HZ). The analysis is based on data recorded using the OPAL detector at LEP at centre-of-mass energies from 183 to 209 GeV corresponding to a total integrated luminosity of 629 pb-1. In the analysis only hadronic decays of the Z boson are considered. A scan over Higgs boson masses from 1 to 120 GeV and decay widths from 1 to 3000 GeV revealed no indication for a signal in the data. From a likelihood ratio of expected signal and standard model background we determine upper limits on cross-section times branching ratio to an invisible final state. For moderate Higgs boson decay widths, these range from about 0.07 pb (MH=60 GeV) to 0.57 pb (MH=114 GeV). For decay widths above 200 GeV the upper limits are of the order of 0.15 pb. The results can be interpreted in general scenarios predicting a large invisible decay width of the Higgs boson. As an example we interpret the results in the so-called stealthy Higgs scenario. The limits from this analysis exclude a large part of the parameter range of this scenario experimentally accessible at LEP 2.  相似文献   

19.
General Relativity and Standard Model are considered as a theory of dynamical scale symmetry with definite initial data compatible with the accepted Higgs mechanism. In this theory the Early Universe behaves like a factory of electroweak bosons and Higgs scalars, and it gives a possibility to identify three peaks in the Cosmic Microwave Background power spectrum with the contributions of photonic decays and annihilation processes of primordial Higgs, W and Z bosons in agreement with the QED coupling constant, Weinberg’s angle, and Higgs’ particle mass of about 118 GeV. The text was submitted by the authors in English.  相似文献   

20.
We analyze the contribution of the SUSY particles to the coupling of the lightest Higgs boson to two photons in supersymmetric theories. We discuss to what extent these contributions can be large enough to allow for a discrimination between the lightest SUSY and the standard Higgs particles in the decoupling limit where all other Higgs bosons are very heavy and no supersymmetric particle has been discovered at future colliders. We find that only chargino and top squark loops can generate a sizeable difference between the standard and the SUSY Higgs-photon couplings. For masses above 250 GeV, the effect of chargino loops on the two-photon width is however smaller than ≈ 10% in the entire SUSY parameter space. Top squarks heavier than 250 GeV can induce deviations larger than 10% only if their couplings to the Higgs boson are large. Since top squark contributions can be sizeable, we derive the two-loop QCD correction to squark loops and show that they are well under control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号