首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Highly ordered composite nanowires with multilayer Ni/Cu and NiFe/Cu have been fabricated by pulsed electrodeposition into nanoporous alumina membrane. The diameter of wires can be easily varied by pore size of alumina, ranging from 30 to 100 nm. The applied potential and the duration of each potential square pulse determine the thickness of the metal layers. The nanowires have been characterized by transmission electron microscopy (TEM), magnetic force microscopy (MFM), and vibrating sample magnetometer (VSM) measurements. The MFM images indicate that every ferromagnetic layer separated by Cu layer was present as single isolated domain-like magnet. This technique has potential use in the measurement and application of magnetic nanodevices.  相似文献   

2.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/Ni O多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场,外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

3.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/NiO多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场.外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

4.
Electronic structures and magnetoresistance (MR) of pseudo-spin-valves structure (PSV) Co3/Cu3/Ni3/Cu3(1 0 0), Co3/Cu3/Ni3/Cu3(1 1 0), and Co3/Cu3/Ni3/Cu3(1 1 1) are studied using the full potential linearized augmented plane wave (FLAPW) method with generalized-gradient approximation (GGA) for the exchange correlation interactions. It has been found that the spin-dependence scatterings at interfaces are insignificant compared with the ones of the interior layers for the three orientation superlattices. Also, we evaluate the MR ratio by means of the two-current model, and find that the MR ratio of Co3/Cu3/Ni3/Cu3(1 0 0) (73.72%) is larger than those of structures Co3/Cu3/Ni3/Cu3(1 1 0) (68.38%), and Co3/Cu3/Ni3/Cu3(1 1 1) (67.09%).  相似文献   

5.
(100) Cu/Ni/Cu sandwich structures have been deposited on (100) Si using the (100) Cu epitaxially grown as the seed layer. The in-plane epitaxial relation between the metal films and Si allows the study of angular dependence of the magnetization for the field parallel to the film plane. Keeping the Cu layers at 1000 Å each and varying the Ni layers between 50 and 1000 Å, the magnetization along the [110] edge is larger than that along the [100] one. This is observed for both structures with a Ni thickness of 1000 and 500 Å, respectively. For the thinner Ni layers, the angular dependence is interfered by the reversal in magnetic anisotropy reported earlier. For such structures, a squared hysteresis loop is observed for the field perpendicular to the film plane, whereas one with little loop is observed for the in-plane magnetization. The angular dependence observed for the 1000 and 500 Å Ni films is the same as that of single crystal Ni. The (100) Cu/Ni/Cu films thus grown can be used for other magnetic measurements in the exploration of two-dimensional magnetism with controlled orientations.  相似文献   

6.
The influence of the laser radiation power density on the changes in the composition and mechanical properties of surface layers of Cu50Ni50 foils has been investigated using X-ray photoelectron spectroscopy, scanning probe microscopy, X-ray diffraction, and microhardness measurements. It has been found that, after laser irradiation, the redistribution of elements occurs in the surface layer with a thickness of ~30 nm on the irradiated side of the foil. It has been revealed that there are microdistortions in the crystal lattice of the alloy, microdeformations of grains, and variations in the microhardness of the irradiated surface. The mechanisms explaining the observed changes in the foils after laser irradiation have been proposed.  相似文献   

7.
The effect of tilt interfaces and layer thickness of Cu/Ni multilayer nanowires on the deformation mechanism are investigated by molecular dynamics simulations. The results indicate that the plasticity of the sample with a 45° tilt angle is much better than the others. The yield stress is found to decrease with increasing the tilt angle and it reaches its lowest value at 33°. Then as the tilt angle continues to increase, the yield strength increases. Furthermore, the studies show that with the decrease of layer thickness, the yield strength gradually decreases. The study also reveals that these different deformation behaviors are associated with the glide of dislocation.  相似文献   

8.
9.
A method and algorithm for numerical analysis and optimization of the basic parameters of electroacoustic surface waves propagating in multilayer piezoelectric structures are described. Combinations of layer materials and piezoelectric substrates for which an electroacoustic surface wave has optimal parameters of propagation (low dispersion, high electromechanical coupling coefficient, high thermal stability, low diffraction losses, etc.) are found.  相似文献   

10.
Very detailed electron energy loss spectra of M2,3 core levels of Cu and Ni in the reflection mode are presented. A careful analysis of the oscillations up to about 300 eV above the edges shows strict analogies to EXAFS and demonstrates that structural information can be obtained with this technique. A comparison with X-ray results above the Cu and Ni K-edges shows that very high accuracy in the radial distribution function can be obtained also with ELS spectra taken above shallow core levels.  相似文献   

11.
李锐  刘腾  陈翔  陈思聪  符义红  刘琳 《物理学报》2018,67(19):190202-190202
金属多层膜调制周期下降到纳米级时,其力学性质会发生显著改变. Cu-Ni晶格失配度约为2.7%,可以形成共格界面和半共格界面,实验中实现沿[111]方向生长的调制周期为几纳米且具有异孪晶界面结构的Cu/Ni多层膜,其力学性质发生显著改变.本文采用分子动力学方法对共格界面、共格孪晶界面、半共格界面、半共格孪晶界面等四种不同界面结构的Cu/Ni多层膜进行纳米压痕模拟,研究压痕过程中不同界面结构类型的形变演化规律以及位错与界面的相互作用,获取Cu/Ni多层膜不同界面结构对其力学性能的影响特征.计算结果表明,不同界面结构的样品在不同压痕深度时表现出的强化或软化作用机理不同,软化机制主要是由于形成了平行于界面的分位错以及孪晶界面的迁移,强化机制主要是由于界面对位错的限定作用以及失配位错网状结构与孪晶界面迁移时所形成的弓形位错之间的相互作用.  相似文献   

12.
This paper aims at investigation of the effect of asphaltene structure on wettability and topography alteration of a glass surface as a result of asphaltene precipitation. In order to provide a better insight into the topography alteration, a bi-fractal approach was employed. Such an approach is capable of discriminating topography alteration in two different surface types, namely, macro-asperities and micro-asperities. The observed variation of the fractal dimension in the two surface types could be considered as the consequence of different asphaltene sources. Therefore, the structure of different asphaltene sources was carefully examined. The effect of asphaltene structure is more pronounced for asphaltene precipitation at higher pressure. It was revealed that asphaltene particles of high complexity and with larger poly-aromatic rings tend to be detached easier at higher pressure than those with smaller poly-aromatic rings. Another evidence to emphasize the significance of asphaltene structure was given through wettability alteration. It was found that asphaltene particles with larger poly-aromatic rings turn the surface less oil wet at higher pressure. It seems that the difference in wetting condition and surface topography alteration of different asphaltene sources roots in their different structures.  相似文献   

13.
Magnetic phase transitions in coupled magnetic sandwiches of Cu/Co/Cu/Ni/Cu(100) and Cu/Co/Fe/Ni/Cu(100) are investigated by photoemission electron microscopy. Element-specific magnetic domains are taken at room temperature to reveal the critical thickness at which the magnetic phase transition occurs. The results show that a coupled magnetic sandwich undergoes three types of magnetic phase transitions depending on the two ferromagnetic films' thickness. A phase diagram is constructed and explained in the process of constructing Monte Carlo simulations, which corroborate the experimental results.  相似文献   

14.
The processes of multilayer thin Cu films grown on Cu (100) surfaces at elevated temperature (250--400\,K) are simulated by mean of kinetic Monte Carlo (KMC) method, where the realistic growth model and physical parameters are used. The effects of small island (dimer and trimer) diffusion, edge diffusion along the islands, exchange of the adatom with an atom in the existing island, as well as mass transport between interlayers are included in the simulation model. Emphasis is placed on revealing the influence of the Ehrlich--Schwoebel (ES) barrier on growth mode and morphology during multilayer thin film growth. We present numerical evidence that the ES barrier does exist for the Cu/Cu(100) system and an ES barrier $E_{\rm B} >0.125$\,eV is estimated from a comparison of the KMC simulation with the realistic experimental images. The transitions of growth modes with growth conditions and the influence of exchange barrier on growth mode are also investigated.  相似文献   

15.
A method for numerically calculating the parameters of surface and pseudosurface electroacoustic waves propagating in multilayer piezoelectrics is suggested. The feasibility of wave parameter optimization by using various materials of the layers and piezoelectric substrate is demonstrated with particular examples.  相似文献   

16.
Metallic superlattices of copper and manganese have been synthesized on glass and mica substrates by a sequential evaporation technique. The electrical resistivity and the temperature coefficient of resistance (TCR) of layered Cu/Mn has been studied for various thicknesses (d) in the range 2–6 nm by varying the number of double layers (n) from 5–35. The transition from a negative to positive TCR has been observed ford >5 nm. The thickness dependence of room temperature resistivity ( RT) and TCR shows oscillatory behaviour.  相似文献   

17.
We present first-principles calculations of the nonlinear optical (NLO) response of a Ni/Cu(001) bilayer. The calculations are based on the full potential linearized augmented plane wave (FLAPW) method with the additional implementation of spin–orbit coupling (SOC). On the basis of this set of eigenstates the magneto-optical transition-matrix elements are evaluated. Using the surface-sheet model the optical reflection properties are determined for the cases of the magnetization vector perpendicular to the surface (polar magneto-optical configuration (MOC)) and for the in-plane magnetization (longitudinal MOC). The nonlinear optical susceptibility tensor elements χ(2) ijk for different magnetization directions as well as the spectral dependence of χ(2) ijk, the resulting intensities, and Kerr angles are presented for the Ni/Cu(001) bilayer. The results show that the magnetic tensor elements of the χ(2) ijk tensor are smaller than the nonmagnetic ones by only one order of magnitude, confirming the important role of magnetic properties in the NLO response. Received: 16 October 2001 / Revised version: 8 March 2002 / Published online: 29 May 2002  相似文献   

18.
Magnetically modulated microwave absorption (MMMA), magnetic hysteresisM(H), giant magnetoresistance (GMR) and ferromagnetic resonance (FMR) have been examined in the antiferro-magnetically coupled Py/Cu (Py=Ni83Fe17, permalloy) multilayer system. The correlation between results obtained by the MMMA technique, the standard GMR measurements, and magnetization reversal studies is shown. Microwave studies of GMR, magnetization reversal, and FMR for different orientations of the magnetic field with respect to the sample surface are presented.  相似文献   

19.
Al/Ni multilayer bridge films, which were composed of alternate Al and Ni layers with bilayer thicknesses of 50, 100 and 200 nm, were prepared by RF magnetron sputtering. In each bilayer, the thickness ratio of Al to Ni was maintained at 3:2 to obtain an overall 1:1 atomic composition. The total thickness of Al/Ni multilayer films was 2 μm. XRD measurements show that the compound of AlNi is the final product of the exothermic reactions. DSC curves show that the values of heat release in Al/Ni multilayer films with bilayer thicknesses of 50, 100 and 200 nm are 389.43, 396.69 and 409.92 J?g?1, respectively. The temperatures of Al/Ni multilayer films were obviously higher than those of Al bridge film and Ni bridge film. Al/Ni multilayer films with modulation of 50 nm had the highest electrical explosion temperature of 7000 K. The exothermic reaction in Al/Ni multilayer films leads to a more intense electric explosion. Al/Ni multilayer bridge films with modulation period of 50 nm explode more rapidly and intensely than other bridge films because decreasing the bilayer thickness results in an increased reaction velocity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号