首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
藉助于凸规划的Lagrange对偶理论,建立了Mises屈服条件下理想刚塑性材料Hill最大塑性功原理的对偶问题,并据此建立了极限分析的一个不可微凸规划模型.该模型不仅避免了对屈服条件的线性化,而且其离散化形式为线性约束下Euclid模之和的极小化问题.针对Euclid模的不可微性,提出理想刚塑性体极限分析的一种光滑化算法.通过计算平面应力和平面应变问题的极限荷载因子和相应的坍塌机构,验证了算法的有效性.  相似文献   

2.
The following problem is considered: how to modify the coefficient matrix of a dual pair of improper linear programs with a block structure so as to make these problems proper and minimize the sum of the squares of the Euclidean norms of the blocks in the correction matrix? Two variants of this problem are examined: (1) all the blocks in the coefficient matrix are modified, and (2) the upper block, which constraints all the primal variables, is left unchanged. Methods are presented for reducing these problems to minimizing quadratic fractional functions subject to linear equality and inequality constraints. The latter problem allows the use of conventional methods for constrained minimization. A numerical example is given.  相似文献   

3.
In this paper we first establish a Lagrange multiplier condition characterizing a regularized Lagrangian duality for quadratic minimization problems with finitely many linear equality and quadratic inequality constraints, where the linear constraints are not relaxed in the regularized Lagrangian dual. In particular, in the case of a quadratic optimization problem with a single quadratic inequality constraint such as the linearly constrained trust-region problems, we show that the Slater constraint qualification (SCQ) is necessary and sufficient for the regularized Lagrangian duality in the sense that the regularized duality holds for each quadratic objective function over the constraints if and only if (SCQ) holds. A new theorem of the alternative for systems involving both equality constraints and two quadratic inequality constraints plays a key role. We also provide classes of quadratic programs, including a class of CDT-subproblems with linear equality constraints, where (SCQ) ensures regularized Lagrangian duality.  相似文献   

4.
In this paper, we present a necessary and sufficient condition for a zero duality gap between a primal optimization problem and its generalized augmented Lagrangian dual problems. The condition is mainly expressed in the form of the lower semicontinuity of a perturbation function at the origin. For a constrained optimization problem, a general equivalence is established for zero duality gap properties defined by a general nonlinear Lagrangian dual problem and a generalized augmented Lagrangian dual problem, respectively. For a constrained optimization problem with both equality and inequality constraints, we prove that first-order and second-order necessary optimality conditions of the augmented Lagrangian problems with a convex quadratic augmenting function converge to that of the original constrained program. For a mathematical program with only equality constraints, we show that the second-order necessary conditions of general augmented Lagrangian problems with a convex augmenting function converge to that of the original constrained program.This research is supported by the Research Grants Council of Hong Kong (PolyU B-Q359.)  相似文献   

5.
In this paper, we consider a class of optimal control problems subject to equality terminal state constraints and continuous state and control inequality constraints. By using the control parametrization technique and a time scaling transformation, the constrained optimal control problem is approximated by a sequence of optimal parameter selection problems with equality terminal state constraints and continuous state inequality constraints. Each of these constrained optimal parameter selection problems can be regarded as an optimization problem subject to equality constraints and continuous inequality constraints. On this basis, an exact penalty function method is used to devise a computational method to solve these optimization problems with equality constraints and continuous inequality constraints. The main idea is to augment the exact penalty function constructed from the equality constraints and continuous inequality constraints to the objective function, forming a new one. This gives rise to a sequence of unconstrained optimization problems. It is shown that, for sufficiently large penalty parameter value, any local minimizer of the unconstrained optimization problem is a local minimizer of the optimization problem with equality constraints and continuous inequality constraints. The convergent properties of the optimal parameter selection problems with equality constraints and continuous inequality constraints to the original optimal control problem are also discussed. For illustration, three examples are solved showing the effectiveness and applicability of the approach proposed.  相似文献   

6.
We consider a general class of problems of the minimization of convex integral functionals subject to linear constraints. Using Fenchel duality, we prove the equality of the values of the minimization problem and its associated dual problem. This equality is a variational criterion for the existence of a solution to a large class of inverse problems entering the class of generalized Fredholm integral equations. In particular, our abstract results are applied to marginal problems for stochastic processes. Such problems naturally arise from the probabilistic approaches to quantum mechanics. Accepted 26 March 2001. Online publication 19 July 2001.  相似文献   

7.
We present an algorithm for the quadratic programming problem of determining a local minimum of ?(x)=12xTQx+cTx such that ATx?b where Q ymmetric matrix which may not be positive definite. Our method combines the active constraint strategy of Murray with the Bunch-Kaufman algorithm for the stable decomposition of a symmetric matrix. Under the active constraint strategy one solves a sequence of equality constrained problems, the equality constraints being chosen from the inequality constraints defining the original problem. The sequence is chosen so that ?(x) continues to decrease and x remains feasible. Each equality constrained subproblem requires the solution of a linear system with the projected Hessian matrix, which is symmetric but not necessarily positive definite. The Bunch-Kaufman algorithm computes a decomposition which facilitates the stable determination of the solution to the linear system. The heart of this paper is a set of algorithms for updating the decomposition as the method progresses through the sequence of equality constrained problems. The algorithm has been implemented in a FORTRAN program, and a numerical example is given.  相似文献   

8.
A stochastic algorithm is proposed for the global optimization of nonconvex functions subject to linear constraints. Our method follows the trajectory of an appropriately defined Stochastic Differential Equation (SDE). The feasible set is assumed to be comprised of linear equality constraints, and possibly box constraints. Feasibility of the trajectory is achieved by projecting its dynamics onto the set defined by the linear equality constraints. A barrier term is used for the purpose of forcing the trajectory to stay within the box constraints. Using Laplace’s method we give a characterization of a probability measure (Π) that is defined on the set of global minima of the problem. We then study the transition density associated with the projected diffusion process and show that its weak limit is given by Π. Numerical experiments using standard test problems from the literature are reported. Our results suggest that the method is robust and applicable to large-scale problems.  相似文献   

9.
We consider an abstract optimal control problem with additional equality and inequality state and control constraints, we use the exterior penalty function to transform the constrained optimal control problem into a sequence of unconstrained optimal control problems, under conditions in control lie in L 1, the sequence of the solution to the unconstrained problem contains a subsequence converging of the solution of constrained problem, this convergence is strong when the problemis non convex, and is weak if the problemis convex in control. This generalizes the results of P.Nepomiastcthy [4] where he considered the control in the Hilbert space L 2(I,? m ).  相似文献   

10.
In this paper, we consider a class of optimal control problems with free terminal time and continuous inequality constraints. First, the problem is approximated by representing the control function as a piecewise-constant function. Then the continuous inequality constraints are transformed into terminal equality constraints for an auxiliary differential system. After these two steps, we transform the constrained optimization problem into a penalized problem with only box constraints on the decision variables using a novel exact penalty function. This penalized problem is then solved by a gradient-based optimization technique. Theoretical analysis proves that this penalty function has continuous derivatives, and for a sufficiently large and finite penalty parameter, its local minimizer is feasible in the sense that the continuous inequality constraints are satisfied. Furthermore, this local minimizer is also the local minimizer of the constrained problem. Numerical simulations on the range maximization for a hypersonic vehicle reentering the atmosphere subject to a heating constraint demonstrate the effectiveness of our method.  相似文献   

11.
A general convex multiobjective control approximation problem is considered with respect to duality. The single objectives contain linear functionals and powers of norms as parts, measuring the distance between linear mappings of the control variable and the state variables. Moreover, linear inequality constraints are included. A dual problem is established, and weak and strong duality properties as well as necessary and sufficient optimality conditions are derived. Point-objective location problems and linear vector optimization problems turn out to be special cases of the problem investigated. Therefore, well-known duality results for linear vector optimization are obtained as special cases.  相似文献   

12.
In this paper a minimization problem with convex objective function subject to a separable convex inequality constraint “≤” and bounded variables (box constraints) is considered. We propose an iterative algorithm for solving this problem based on line search and convergence of this algorithm is proved. At each iteration, a separable convex programming problem with the same constraint set is solved using Karush-Kuhn-Tucker conditions. Convex minimization problems subject to linear equality/ linear inequality “≥” constraint and bounds on the variables are also considered. Numerical illustration is included in support of theory.  相似文献   

13.
In this paper, a functional inequality constrained optimization problem is studied using a discretization method and an adaptive scheme. The problem is discretized by partitioning the interval of the independent parameter. Two methods are investigated as to how to treat the discretized optimization problem. The discretization problem is firstly converted into an optimization problem with a single nonsmooth equality constraint. Since the obtained equality constraint is nonsmooth and does not satisfy the usual constraint qualification condition, relaxation and smoothing techniques are used to approximate the equality constraint via a smooth inequality constraint. This leads to a sequence of approximate smooth optimization problems with one constraint. An adaptive scheme is incorporated into the method to facilitate the computation of the sum in the inequality constraint. The second method is to apply an adaptive scheme directly to the discretization problem. Thus a sequence of optimization problems with a small number of inequality constraints are obtained. Convergence analysis for both methods is established. Numerical examples show that each of the two proposed methods has its own advantages and disadvantages over the other.  相似文献   

14.
This paper presents a class of constrained optimization problems whereby a quadratic cost function is to be minimized with respect to a weight vector subject to an inequality quadratic constraint on the weight vector. This class of constrained optimization problems arises as a result of a motivation for designing robust antenna array processors in the field of adaptive array processing. The constrained optimization problem is first solved by using the primal-dual method. Numerical techniques are presented to reduce the computational complexity of determining the optimal Lagrange multiplier and hence the optimal weight vector. Subsequently, a set of linear constraints or at most linear plus norm constraints are developed for approximating the performance achievable with the quadratic constraint. The use of linear constraints is very attractive, since they reduce the computational burden required to determine the optimal weight vector.  相似文献   

15.
The l1 and constrained l1 estimation problems are viewed in the light of extended geometric programming. As a result of this point of view we are able to establish an equivalence between geometric and linear programming duality results for these classes of problems. In addition, the duality results provide some useful insights into the properties of the l1 estimation problems. Finally we establish an equivalence between the l norm problem and a class of constrained l1 estimation problems.  相似文献   

16.
Throughout this paper, the authors introduce a new condition, defined by Assumption  SS, which establishes a necessary and sufficient condition for the validity of the strong duality between a convex optimization problem and its Lagrange dual. This work will be focused on the context of emptiness of the interior of the ordering cone and convexity of the equality constraints. Moreover, this new condition will be necessary and sufficient for the infinite dimensional Lagrange multiplier rule. This new principle will find application to the elastic–plastic torsion problem, to the continuum model of transportation and to a problem with quadratic equality constraint with connected to evolutionary illumination and visibility problems.  相似文献   

17.
Mei  Yu  Chen  Zhiping  Liu  Jia  Ji  Bingbing 《Journal of Global Optimization》2022,83(3):585-613

We study the multi-stage portfolio selection problem where the utility function of an investor is ambiguous. The ambiguity is characterized by dynamic stochastic dominance constraints, which are able to capture the dynamics of the random return sequence during the investment process. We propose a multi-stage dynamic stochastic dominance constrained portfolio selection model, and use a mixed normal distribution with time-varying weights and the K-means clustering technique to generate a scenario tree for the transformation of the proposed model. Based on the scenario tree representation, we derive two linear programming approximation problems, using the sampling approach or the duality theory, which provide an upper bound approximation and a lower bound approximation for the original nonconvex problem. The upper bound is asymptotically tight with infinitely many samples. Numerical results illustrate the practicality and efficiency of the proposed new model and solution techniques.

  相似文献   

18.
Exploiting some tools of modern variational analysis involving the approximate extremal principle, the fuzzy sum rule for the Fréchet subdifferential, the sum rule for the limiting subdifferential and the scalarization formulae of the coderivatives, we establish necessary conditions for (weakly) efficient solutions of a multiobjective optimization problem with inequality and equality constraints. Sufficient conditions for (weakly) efficient solutions of an aforesaid problem are also provided by means of employing L-(strictly) invex-infine functions defined in terms of the limiting subdifferential. In addition, we introduce types of Wolfe and Mond–Weir dual problems and investigate weak/strong duality relations.  相似文献   

19.
Zusammenfassung In dieser Arbeit wird für das Problem, ein quasikonvexes Funktional unter konkaven Ungleichungs- und affin linearen Gleichungsrestriktionen auf einer konvexen Teilmenge eines linearen Raumes zu minimieren, eine notwendige globale Optimalitätsbedingung in Form einer verallgemeinerten Multiplikatorenregel hergeleitet und einige einfache Folgerungen wie eine Dualitätsaussage und alternative Sätze in endlich dimensionalen Räumen diskutiert.
Summary In this paper we present a global necessary optimality condition in form of a generalized multiplier rule for the problem of minimizing quasiconvex functionals subject to concave inequality — and affine linear equality — constraints over a convex subset of a linear space and discuss some consequences as a duality theorem and alternative conditions for finite dimensional problems.
  相似文献   

20.
《Optimization》2012,61(3):241-250
In this article, we study the minimization of a pseudolinear (i.e. pseudoconvex and pseudoconcave) function over a closed convex set subject to linear constraints. Various dual characterizations of the solution set of the minimization problem are given. As a consequence, several characterizations of the solution sets of linear fractional programs as well as linear fractional multi-objective constrained problems are given. Numerical examples are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号