首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Spectroscopic and spectrofluorimetric studies were made of the interaction between the drug atenolol and iodine. The interaction was found to proceed through the initial formation of a charge transfer (CT) complex as an intermediate species. The product of this interaction has been isolated and characterized using UV-Vis, FT-IR and Raman spectroscopic techniques. Formation of the triodide I3-\mathrm{I}_{3}^{-} species was confirmed by its electronic and Raman spectra. Peaks appeared in Raman spectrum of the isolated product at 153, 102 and 85 cm−1 that are assigned to ν as(I-I), ν s(I-I) and d(I3-)\delta(\mathrm{I}_{3}^{-}) respectively, which confirmed the presence of the I3-\mathrm{I}_{3}^{-} ion. The stoichiometry of the complex was found to be 1:2. The rate of their reaction has been measured as a function of time and solvent. Pseudo-first-order rate constants for the reaction were measured at various temperatures and the thermodynamic activation parameters (ΔG #S # and ΔH #) were computed. Preliminary fluorescence quenching studies indicated that the interaction between atenolol and iodine is spontaneous and proceeds through a CT complex, and the quenching of fluorescence of atenolol by iodine increases as the extent of such complexation increases  相似文献   

2.
To understand the thermodynamic characteristics of cationic surfactants in binary mixtures, the aggregation behavior of hexadecyltrimethylammonium chloride (CTAC) has been investigated in ethylene glycol (EG) + water solvent mixtures at different temperatures and EG to water ratios. The critical micelle concentration (CMC) and degree of counter ion bonding (β) were calculated from electrical conductivity measurements. An equilibrium model for micelle formation was applied to obtain the thermodynamic parameters for micellization, including the standard Gibbs energies of micellization (DGmico)\Delta G_{\mathrm{mic}}^{\mathrm{o}}), standard enthalpies of micelle formation (DHmico)\Delta H_{\mathrm{mic}}^{\mathrm{o}}) and standard entropies of micellization (DSmico)\Delta S_{\mathrm{mic}}^{\mathrm{o}}). Our results show that DGmico\Delta G_{\mathrm{mic}}^{\mathrm{o}} is always negative and slightly dependent on temperature. The process of micellization is entropy driven in pure water, whereas in EG + water mixtures the micellization is enthalpy driven.  相似文献   

3.
Density measurements were made for binary aqueous solutions of polyethylene glycol at seven temperatures: 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, and 313.15 K. Polyethylene glycol samples with nominal average molar masses of 3000 g⋅mol−1 (PEG 3000), 6000 g⋅mol−1 (PEG 6000), 10000 g⋅mol−1 (PEG 10000) and 20000 g⋅mol−1 (PEG 20000) were used. These results were used to determine the specific volumes of solutions with solute-to-solvent mass ratios (mass of the solute/mass of the solvent) in the range 0.0546 to 1.4932 for PEG 3000, from 0.0553 to 1.4986 for PEG 6000, from 0.0552 to 1.2241 for PEG 10000, and from 0.0530 to 1.2264 for PEG 20000. The differences between the specific volume of a solution and the specific volume of the pure solvent, at a given temperature, were represented by a virial-type equation in terms of solute concentration. The first-order coefficient of the expansion is the partial specific volume of the solute at infinite dilution. The higher-order coefficients are related to the contribution of pairs, triplets, and higher-order solute aggregates, according to the Constant-Pressure Solution Theory. The functional dependence of the virial coefficients upon temperature is discussed in terms of solute-solute and solute-solvent interactions. The effect of the PEG molar mass on the partial specific volume of solute at infinite dilution, as well as the contributions of pairs of solute molecules to the solution volume, are also investigated. The apparent specific volume, apparent specific expansibility, apparent specific expansibility at infinite dilution and virial coefficients of the apparent specific expansibility are also presented.  相似文献   

4.
The kinetics of the osmium(VIII) (Os(VIII)) catalyzed oxidation of diclofenac sodium (DFS) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium has been studied spectrophotometrically at a constant ionic strength of 1.0 mol⋅dm−3. The reaction showed first order kinetics in [Os(VIII)] and [DPC] and less than unit order with respect to [DFS] and [alkali]. The rate decreased with increase in [periodate]. The reaction between DFS and DPC in alkaline medium exhibits 1:2 [DFS]:[DPC] stoichiometry. However, the order in [DFS] and [OH] changes from first order to zero order as their concentration increases. Changes in the ionic strength and dielectric constant did not affect the rate of reaction. The oxidation products were identified by LC-ESI-MS, NMR, and IR spectroscopic studies. A possible mechanism is proposed. The reaction constants involved in the different steps of the mechanism were calculated. The catalytic constant (K C) was also calculated for Os(VIII) catalysis at the studied temperatures. From plots of log 10 K C versus 1/T, values of activation parameters have been evaluated with respect to the catalytic reaction. The activation parameters with respect to the slow step of the mechanism were computed and discussed, and thermodynamic quantities were also determined. The active osmium(VIII) and copper(III) periodate species have been identified.  相似文献   

5.
The absorption spectra of nine compounds structurally related to phenytoin (5,5-diphenylhydantoin) were recorded in twelve solvents over the range of 200 to 400 nm. The effects of solvent dipolarity/polarizability and solvent/solute hydrogen bonding interactions were analyzed by means of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The lipophilic activity of the investigated hydantoins was estimated by calculation of their log 10 P values. The calculated values of log 10 P were correlated with the ratio of the contributions of specific and non-specific solute/solvent interactions. The correlation equations were combined with the corresponding ED50 values to generate new equations that demonstrate exact relationship between solute/solvent interactions and the structure-activity parameters.  相似文献   

6.
The well-known adsorption integral equation (AIE) for calculating pore size and adsorption energy distributions from adsorption isotherms on porous solids is, from the mathematical point of view, a linear Fredholm integral equation of the first kind and therefore an ill-posed problem. What can we realistically expect from the solution of such an ill-posed problem by regularization? Does it make sense to restrict the number of possible solutions by the so-called ansatz method? In this paper, the two methods for solving ill-posed problems are from scratch explained and illuminated by concrete examples. Their relevance and fundamental limitations are discussed.  相似文献   

7.
Simulations of the thermal effects during adsorption cycles are valuable tools for the design of efficient adsorption-based systems such as gas storage, gas separation and adsorption-based heat pumps. An analytical representation of the measured adsorption data over the wide operating pressure and temperature swing of the system is necessary for the calculation of complete mass and energy conservation equations. In Part 1, the Dubinin-Astakhov (D-A) model is adapted to model hydrogen, nitrogen, and methane adsorption isotherms on activated carbon at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter D-A type adsorption model is shown to fit the experimental data for hydrogen (30 to 293 K, up to 6 MPa), nitrogen (93 to 298 K, up to 6 MPa), and for methane (243 to 333 K, up to 9 MPa). The quality of the fit of the multiple experimental adsorption isotherms is excellent over the large temperature and pressure ranges involved. The model’s parameters could be determined as well from only the 77 K and 298 K hydrogen isotherms without much reducing the quality of the fit.  相似文献   

8.
We model carbon-based microporous materials, such as activated carbons, taking into account surface defects in the form of geometrical rugosity in the inner surface of each graphitic slit pore. The used model is a simplified variation of the randomly etched graphite (REG) pore model (Seaton et al., Langmuir 13:1199–1204, 1997).  相似文献   

9.
Solution densities over the temperature range 288.15 to 328.15 K have been measured for aqueous solutions of N-acetylarginamide monotrifluoroacetate and sodium trifluoroacetate, from which the partial molar volumes at infinite dilution, V2oV_{2}^{\mathrm{o}}, were determined. The partial molar heat capacities at infinite dilution, Cp,2oC_{p,2}^{\mathrm{o}}, were also determined for these solutes over the same temperature range. These V2oV_{2}^{\mathrm{o}} and Cp,2oC_{p,2}^{\mathrm{o}} results, along with relevant data taken from the literature, have been used to calculate the contributions of the protonated arginyl side-chain to the thermodynamic properties. These new side-chain values were critically compared with those obtained previously using alternative side-chain model compounds.  相似文献   

10.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   

11.
The diffusion behavior of C4–C10 n-alkanes in silicalite-1 has been investigated by using the Zero Length Column method. The diffusivities derived from measurements at different purge rates with different purge gases confirming intracrystalline diffusion control. Data are compared with results reported in the literature for MFI zeolites. The diffusivities were found to be consistent and agree well with data previous obtained by ZLC. However, these data showed a remarkable disagreement with other reported techniques (PFG-NMR, QENS and Permeation). The eventual influence of carbon dioxide (CO2) adsorption on diffusion properties of n-alkanes in silicalite was also investigated. For this purpose, a series of experiments was performed involving hydrocarbons mixed with CO2. Data were obtained at 303 K and flow rates between 20 and 80 mL/min. The presence of CO2 does not seem to influence the intracrystalline transport rate of the investigated light hydrocarbons (n-C4 and n-C6). On the other hand, the situation for n-C8 and n-C10 is more complex. The diffusivity values are higher compared to the previously reported values.  相似文献   

12.
The use of simple linear mathematical models to estimate chemical properties is not a new idea. Albert Einstein used very simple ‘gravity-like' forces to explain the capillarity of different liquids in 1900–1901. Today such models are used in more complicated situations, and a great many have been developed to analyse interactions between proteins and their ligands. This is not surprising, since proteins are too complicated to model accurately without lengthy numerical analysis, and simple models often do at least as good a job in predicting binding constants as much more computationally expensive methods. One hundred years after Einstein’s ‘miraculous year’ in which he transformed physics, it is instructive to recall some of his even earlier work. As approximations, ‘scoring functions’ are excellent, but it is dangerous to read too much into them. A few cautionary tales are presented for the beginner to the field of ligand affinity prediction by linear models.  相似文献   

13.
The aim of this work was to study the effect of the metal loading on the structure of two series of cobalt and manganese pillared clay-supported catalysts. For this purpose, equilibrium data for CO2 adsorption at 273 K were analysed using Freundlich, Langmuir and Toth isotherm models, in order to estimate the adsorption parameters and to relate them with the metal loading of the catalysts. The metal distributions on the porous structure of the catalysts were studied using the temperature programmed reduction results combined with information from the nitrogen physisorption data. Comparison of all results reveals that up to a certain metal loading, about 0.5 wt% of Co and 2 wt% of Mn, the metal oxide is well dispersed into the porous structure of the pillared clay. At higher metal loadings, bulk-metal oxide particles are formed on the external surface.  相似文献   

14.
15.
The protonation constants for oxidized glutathione, H i−1L(4−i+1)−, K i H=[H i L(4−i)−]/[H i−1L(4−i+1)−][H+] i=1,2,…,6 have been measured at 5, 25 and 45 °C as a function of the ionic strength (0.1 to 5.4 mol⋅[kg(H2O)]−1) in NaCl solutions. The effect of ionic strength on the measured protonation constants has been used to determine the thermodynamic values (K i H0) and the enthalpy (ΔH i ) for the dissociation reaction using the SIT model and Pitzer equations. The SIT (ε) and Pitzer parameters (β (0), β (1) and C) for the dissociation products (L4−, HL3−, H2L2−, H3L, H4L, H5L+, H6L2+) have been determined as a function of temperature. These results can be used to examine the effect of ionic strength and temperature on glutathione in aqueous solutions with NaCl as the major component (body fluids, seawater and brines).  相似文献   

16.
Solvent extraction of the trivalent lanthanoids (except Pm) with mixtures of a chelating extractant, either 1-(2-thienyl)-4,4,4-trifluoro-1,3-butanedione (thenoyltrifluoro-acetone, HTTA) or 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (HP) and diphenylsulphoxide (S), from chloride solutions has been studied in C6H6. It was found that, in the presence of a diphenylsulfoxide, the lanthanoids were extracted as Ln(TTA)3⋅S and LnP3⋅S. The extraction data have been analyzed by a graphical method taking into account aqueous phase speciation and the plausible complex extracted into the organic phase. On the basis of the experimental data, values of the equilibrium constants have been calculated. Positive values of the synergistic coefficients show that all lanthanoids are extracted synergistically upon the addition of compound S to the chelating extractant. The separation of the lanthanoids with synergistic mixtures was, in most cases, a little higher than those obtained using HTTA or HP alone.  相似文献   

17.
The values of the thermodynamic second dissociation constant, pK 2, and related thermodynamic quantities of N-(2-hydroxyethyl)piperazine-N′-2-hydroxypropanesulfonic acid (HEPPSO) have already been reported from 5 to 55?°C, including 37?°C, by the emf method. This paper reports the results for the pH of one chloride-free buffer solution containing the composition: (a) HEPPSO (0.08 mol?kg?1)+NaHEPPSO (0.04 mol?kg?1). The remaining seventeen buffer solutions contain a saline medium of ionic strength I=0.16 mol?kg?1, matching closely that of physiological fluids. Conventional pH values, denoted as pa H, for all eighteen buffer solutions from 5 to 55?°C have been calculated. The operational pH values, designated as pH, with residual liquid-junction corrections for five buffer solutions, one without NaCl, and four with buffer solutions in saline media of I=0.16 mol?kg?1 are recommended as pH standards in the range of physiological application. These are based on the NBS/NIST standard scale for pH measurements.  相似文献   

18.
Adduct formation in the binary systems of O-phospho-L-serine with biogenic amines (putrescine, spermidine or spermine) has been investigated. The overall stability constants of the adducts and the equilibrium constants of their formation have been determined using computer analysis of potentiometric data. Ion-ion interactions have been established to occur in the identified molecular complexes. The potential reaction centers are phosphate, carboxylate and amine groups from phosphorylated serine as well as the –NH3+ and –NH2+– groups from polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated (positive reaction center) and the phosphoserine is partly or totally deprotonated (negative reaction center). The stability of the molecular complexes formed in the studied systems depends on the acid-base character of the substrates and on the structure of the reacting molecules. Sites of interactions in the bioligands have been deduced on the basis of the results of the equilibrium study and analysis of the changes in the positions of signals in the 13C and 31P NMR spectra.  相似文献   

19.
Several polyether-type podands were synthesized that contained a variable number of potential donor oxygen atoms (four to twelve) and an aromatic ring in the chain. Extraction experiments were performed to elucidate the influence of the number of oxygen atoms on the extraction selectivity towards alkali metal picrates, from aqueous to dichloromethane phases. The results show that the extraction efficiency for lithium picrate is almost independent of the number of oxygen atoms in the podand. The extraction efficiency for sodium picrate was found to increase significantly with the number of oxygen atoms up to about seven, but for the potassium to cesium picrates the extraction efficiency increased up to about eight oxygen atoms. The increase in extraction efficiency may be rationalized in terms of the saturation of the cation’s first coordination sphere: after a critical number of oxygen atoms is reached and the first coordination sphere is saturated, the much smaller detected increases in the extraction efficiency may be seen as a statistical effect. The discrimination between sodium and potassium pirates is only achieved when the podands possess seven or more oxygen atoms. Under the experimental conditions used, the podands studied are unable to discriminate between potassium, rubidium and cesium picrates.  相似文献   

20.
Simulations of the thermal effects during adsorption cycles are a valuable tool for the design of efficient adsorption-based systems such as gas storage, gas separation and adsorption-based heat pumps. In this paper, we present simulations of the thermal phenomena associated with hydrogen, nitrogen and methane adsorption on activated carbon for supercritical temperatures and high pressures. The analytical expressions of adsorption and of the internal energy of the adsorbed phase are calculated from a Dubinin-Astakhov adsorption model using solution thermodynamics. A constant adsorption volume is assumed. The isosteric heat is also calculated and discussed. Finally, the mass and energy rate balance equations for an adsorbate/adsorbent pair are presented and are shown to be in agreement with desorption experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号