首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
Two tripodal fluorescent probes Zn?L1 , 2 have been synthesised, and their anion‐binding capabilities were examined by using fluorescence spectroscopy. Probe Zn?L1 allows the selective and ratiometric detection of adenosine triphosphate (ATP) at physiological pH, even in the presence of several competing anions, such as ADP, phosphate and bicarbonate. The probe was applied to the real‐time monitoring of the apyrase‐catalysed hydrolysis of ATP, in a medium that mimics an extracellular fluid.  相似文献   

2.
The newly prepared fluorescent carboxyamidoquinolines ( 1 – 3 ) and their Zn(II) complexes ( Zn@1-Zn@3 ) were used to bind and sense various phosphate anions utilizing a relay mechanism, in which the Zn(II) ion migrates from the Zn@1-Zn@3 complexes to the phosphate, namely adenosine 5’-triphosphate (ATP) and pyrophosphate (PPi), a process accompanied by a dramatic change in fluorescence. Zn@1-Zn@3 assemblies interact with adenine nucleotide phosphates while displaying an analyte-specific response. This process was investigated using UV-vis, fluorescence, and NMR spectroscopy. It is shown that the different binding selectivity and the corresponding fluorescence response enable differentiation of adenosine 5’-triphosphate (ATP), adenosine 5’-diphosphate (ADP), pyrophosphate (PPi), and phosphate (Pi). The cross-reactive nature of the carboxyamidoquinolines-Zn(II) sensors in conjunction with linear discriminant analysis (LDA) was utilized in a simple fluorescence chemosensor array that allows for the identification of ATP, ADP, PPi, and Pi from 8 other anions including adenosine 5’-monophosphate (AMP) with 100 % correct classification. Furthermore, the support vector machine algorithm, a machine learning method, allowed for highly accurate quantitation of ATP in the range of 5–100 μM concentration in unknown samples with error <2.5 %.  相似文献   

3.
This study shows that the relaxivity and optical properties of functionalised lanthanide‐DTPA‐bis‐amide complexes (lanthanide=Gd3+ and Eu3+, DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln3+/anion coordination. Zinc(II)‐dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide “arms” of these ligands, and the interaction of the resulting Gd–Zn2 complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine‐5′‐triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H2O and D2O, 17O and 31P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out.  相似文献   

4.
Current probes for alkaline phosphatase (ALP) detection had been developed mainly by adding a phosphate group to a dye, which would lead to indistinct performance when implemented in a living system as several phosphatases exist together. In this study, the nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) were introduced into 2′‐(2′‐hydroxyphenyl)‐benzothiazole‐based probes, and highly fluorescent turn‐on probes with good selectivity towards ALP over several phosphatases, as well as high affinity and low toxicity were obtained. In the presence of l ‐phenylalanine, an ALP inhibitor, a strong decrease in fluorescence recovery was observed. These probes allowed for real‐time imaging of endogenous ALP activity in living cells as well as in a zebrafish model.  相似文献   

5.
A microarray‐chip assay system for the fluorescence detection of phosphate‐containing analytes in aqueous media has been constructed from stimuli‐responsive polymerized poly(diacetylene)‐liposomes for the first time. Proper combination of the liposome components (ZnII‐dipicolylamine for phosphate binding and an amine‐terminated component for anchoring the liposome onto an aldehyde‐derivatized glass plate), has led to a microarray chip that selectively detects pyrophosphate, an important biomarker, over competing anions, such as phosphate and adenosine triphosphate, with nanomolar sensitivity. The chip‐based assay shows advantages, such as high specificity and sensitivity, over solution‐based assays that use the same liposomes, and over known homogeneous molecular sensing systems.  相似文献   

6.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

7.
Two new three‐dimensional (3D) LnIII metal‐organic frameworks (MOFs) were designed and successfully obtained via a solvothermal reaction between lanthanide(III) nitrates and a semi‐flexible carbazole tetracarboxylate acid linker as a high‐performance chromophore. 1 and 2 possess porous 3D networks with channels along the a axis, and more importantly, they show a highly sensitive and selective fluorescence quenching response to Fe3+ and CrVI anions. The sensing mechanism investigation revealed that the weak interactions of Fe3+ with nitrogen atoms of carbazole and deprotonated carboxylic acids protruding into the pores of MOFs quenched the luminescence of 1 and 2 effectively. In addition, the competition absorption also played an important role in the luminescence quenching detection of Fe3+ based on 1 , and CrVI anions based on 1 and 2 . Therefore, 1 and 2 represent an alternative example of regenerable luminescence based sensors for the quantitative detection of Fe3+ and CrVI anions.  相似文献   

8.
In the past few years, highly luminescent noble metal nanoclusters (e.g., Au and Ag NCs or Au/Ag NCs in short) have emerged as a class of promising optical probes for the construction of high‐performance optical sensors because of their ultrasmall size (<2 nm), strong luminescence, good photostability, excellent biocompatibility, and unique metal‐core@ligand‐shell structure. In this Focus Review, we briefly summarize the common syntheses for water‐soluble highly‐luminescent thiolate‐ and protein‐protected Au/Ag NCs and their interesting luminescence properties, highlight recent progress in their use as optical sensors with an emphasis on the mechanisms underlying their selectivity, and finally discuss approaches to improving their sensitivity. The scope of the works surveyed is confined to highly luminescent thiolate‐ and protein‐protected Au/Ag NCs.  相似文献   

9.
In this study, citrate‐stabilised iron oxide nano‐particles (~16 nm) have been immobilised on commercial silica monolithic centrifugal spin columns (MonoSpin) for the extraction of phosphorylated compounds. Two alternative strategies were adopted involving either direct electrostatic attachment to an aminated MonoSpin (single‐layer method) in the first instance, or the use of a layer‐by‐layer method with poly(diallyldimethylammonium) chloride. Field‐emission scanning electron spectroscopy and energy‐dispersive X‐ray spectroscopy was used for confirming notably higher coverage of nano‐particles using the layer‐by‐layer method (2.49 ± 0.53 wt%) compared with the single‐layer method (0.43 ± 0.30 wt%). The modified monolith was used for the selective separation/extraction of adenosine monophosphate, adenosine diphosphate and adenosine triphosphate with elution using a phosphate buffer. A reversed‐phase liquid chromatographic assay was used for confirming that adenosine, as a non‐phosphorylated control was not retained on the modified MonoSpin devices, whereas recovery of 80% for adenosine monophosphate, 86% for adenosine diphosphate and 82% for adenosine triphosphate was achieved.  相似文献   

10.
Adenosine 5'-triphosphate (ATP) plays an important role in various physiological activities and pathological processes in living cells. Consequently, a large number of fl uorescent sensors for detecting ATP have developed in recent years. In this review, we summarized these fl uorescent sensors, where these sensors were divided into fi ve typed ones according to the structure of probes used.  相似文献   

11.
Metal‐ion‐directed self‐assembly has been used to construct kinetically inert, water‐soluble heterometallic Ru2Re2 hosts that are potential sensors for bioanions. A previously reported metallomacrocycle and a new derivative synthesised by this approach are found to be general sensors for bioanions in water, showing an “off–on” luminescent change that is selective for nucleotides over uncharged nucleobases. Through a change in the ancillary ligands coordinated to the ruthenium centres of the host, an “off–on” sensor has been produced. Whilst this host only shows a modest enhancement in binding affinities for nucleotides relative to the other two host systems, its sensing response is much more specific. Although a distinctive “off–on” luminescence response is observed for the addition of adenosine triphosphosphate (ATP), related structures such as adenine and guanosine triphosphate (GTP) do not induce any emission change in the host. Detailed and demanding DFT studies on the ATP‐ and GTP‐bound host–guest complexes reveal subtle differences in their geometries that modulate the stacking interactions between the nucleotide guests and the ancillary ligands of the host. It is suggested that this change in stacking geometries affects solvent accessibility to the binding pocket of the host and thus leads to observed difference in the host luminescence response to the guests.  相似文献   

12.
The determination of enzyme activities and the screening of enzyme regulators is a major task in clinical chemistry and drug development. A broad variety of enzymatic reactions is associated with the consumption of adenosine triphosphate (ATP), including, in particular, phosphorylation reactions catalyzed by kinases, formation of adenosine cyclic monophosphate (cAMP) by adenylate cyclases, and ATP decomposition by ATPase. We have studied the effect of a series of adenosine (ATP, ADP, AMP, cAMP) and guanosine (GTP, GDP) phosphoric esters, and of pyrophosphate (PP) on the fluorescence emission of the europium tetracycline (EuTC) complex. We found that these compounds have strongly different quenching effects on the luminescence emission of EuTC. The triphosphates ATP and GTP behave as strong quenchers in reducing the fluorescence intensity of EuTC to 25 % of its initial value by formation of a ternary 1:1:1 complex. All other phosphate esters showed a weak quenching effect only. The applicability of this fluorescent probe to the determination of the activity of phosphorylation enzymes is demonstrated by means of creatine kinase as a model for non-membrane-bound kinases. In contrast to other methods, this approach does not require the use of radioactively labeled ATP substrates, additional enzymes, or of rather complex immunoassays.  相似文献   

13.
A new ligand, LC, bis-[(6'-carboxy-2,2'-bipyridine-6-yl)]phenylphosphine oxide, in which the tridentate 6-carboxy-2,2'-bipyridyl arms are directly linked to a phenylphosphine oxide fragment, has been synthesized. The corresponding [Ln.LC]Cl.xH2O complexes (Ln = Eu, x = 4, and Tb, x = 3) were isolated from solutions containing equimolar amounts of LC and hydrated LnCl3 salts and characterized by elemental analysis, mass spectrometry, and infrared spectroscopy. The interactions of the Eu complex with various anions (AMP(2-), ADP3-, ATP,4- HPO4(2-), and NO3-) were studied by titration experiments, using UV-vis, luminescence spectroscopy, and excited-state lifetime measurements. The results are in keeping with strong interactions with the ADP3-, ATP4-, and phosphate anions in TRIS/HCl buffer (0.01 M, pH = 7.0), as revealed by the determination of the conditional stepwise association constants. These values are higher than the one determined for ligand LB, bis[(6'-carboxy-2,2'-bipyridine-6-methyl-yl)]-n-butylamine (Delta log K approximately 1-2). The interaction of complexes [Ln.LB]+ and [Ln.LC]+ with nitrate, monohydrogenophosphate, methyl phosphate (MeP2-), methyldiphosphate (MeDP3-), and methyltriphosphate (MeTP4-) anions was investigated by means of quantum mechanical (QM) calculations. The results, combined with data on the photophysical impact of the sequential competitive binding of anions to the Eu complexes in water, suggest that LB is too flexible to ensure a good coordination pocket, while the molecular structure of ligand LC stabilizes both the formation of the lanthanide complexes and its adducts with ATP.  相似文献   

14.
The design of molecular receptors that bind and sense anions in biologically relevant aqueous solutions is a key challenge in supramolecular chemistry. The recognition of inorganic phosphate is particularly challenging because of its high hydration energy and pH dependent speciation. Adenosine monophosphate (AMP) represents a valuable but elusive target for supramolecular detection because of its structural similarity to the more negatively charged anions, ATP and ADP. We report two new macrocyclic Eu(iii) receptors capable of selectively sensing inorganic phosphate and AMP in water. The receptors contain a sterically demanding 8-(benzyloxy)quinoline pendant arm that coordinates to the metal centre, creating a binding pocket suitable for phosphate and AMP, whilst excluding potentially interfering chelating anions, in particular ATP, bicarbonate and lactate. The sensing selectivity of our Eu(iii) receptors follows the order AMP > ADP > ATP, which represents a reversal of the order of selectivity observed for most reported nucleoside phosphate receptors. We have exploited the unique host–guest induced changes in emission intensity and lifetime for the detection of inorganic phosphate in human serum samples, and for monitoring the enzymatic production of AMP in real-time.

We present two new europium-based anion receptors that selectively bind to inorganic phosphate and AMP in aqueous media. Their sensing selectivity follows the order AMP > ADP > ATP, representing a reversal of the selectivity order observed for most nucleoside phosphate receptors.  相似文献   

15.
A dynamic combinatorial library of lanthanide complexes was prepared to develop induced‐circular‐dichroism (CD) chirality probes. It totaled 168 combinations of coordinative N‐aromatic chromophores, trivalent lanthanide centers, and guest amino acids. Eu3+ and Tb3+ complexes prepared with quinolinecarboxylic acid were particularly effective as induced‐CD chirality probes for selective alanine detection, whereas a Yb3+ complex with terpyridine exhibited glutamine selectivity. The former two complexes highly preferred alanine to the corresponding amine, ester, amino alcohol, and carboxylic acid derivatives. As such, the present combinatorial screening of a dynamic lanthanide complex library has led to a new series of induced‐CD chirality probes for specific amino acids.  相似文献   

16.
A new HPLC method for the simultaneous quantitative analysis of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) was developed and validated. ATP, ADP, and AMP were extracted from human bronchial epithelial cells with a rapid extraction procedure and separated with a C18 column (3 × 150 mm, 2.7 µm) using isocratic elution with a mobile phase consisting of 50 mM of potassium hydrogen phosphate (pH 6.80). The absorbance was monitored at 254 nm. The calibration curves were linear in 0.2 to 10 µM, selective, precise, and accurate. This method allowed us to quantify the nucleotides from two cell models: differentiated NHBE primary cells grown at the air–liquid interface (ALI) and BEAS-2B cell line. Our study highlighted the development of a sensitive, simple, and green analytical method that is faster and less expensive than other existing methods to measure ATP, ADP, and AMP and can be carried out on 2D and 3D cell models.  相似文献   

17.
Using the strategy of template polymerization, a presynthesized specific metal‐complexing polymer (poly(methacryloylhistidine‐Ni(II)‐CN?), Ni‐CN/IP) has been specifically used to recognize cyanide ion. As described previously, nickel(II)‐methacryloylhistidine dihydrate complex monomer was synthesized and reacted with KCN to produce the monomer‐template complex. This monomer‐template complex phase was polymerized in a dispersion medium. After polymerization, the template (CN?) was removed from the Ni‐CN/IP, producing CN? ion imprinted metal‐chelate polymer. The synthesized ion imprinted polymer is examined as a novel potential cyanide selective ionophore in polymeric membrane type ion selective electrodes. Membranes formulated with Ni‐CN/IP are shown to exhibit enhanced potentiometric selectivity for cyanide over more lipophilic anions including perchlorate, iodide, and thiocyanate. Addition of lipophilic cationic sites into the organic membranes enhanced the response and selectivity towards CN? ion, while addition of lipophilic anionic sites deteriorated the response but enhanced the selectivity, indicating that the Ni‐CN/IP particles behaves via the so‐called “mixed‐mode” response mechanism. The fabricated sensors possessed good performance characteristics, in terms of life span, selectivity for CN? ion over a wide range of other interfering anions, fast response, stability and high reproducibility. Applications for direct determination of cyanide ion in hazardous wastes using the proposed sensors showed good correlation with data obtained using commercial solid state cyanide electrode, with no significant difference in the t‐test values with 95 % confidence level. An F‐test revealed that the standard deviations of the replicate sample measurements obtained by the two methods were not significantly different.  相似文献   

18.
稀土近红外荧光材料具有特征发射峰尖锐、光稳定性好和毒性低等特点。近年来,稀土近红外荧光材料在光纤通讯、激光系统、生物分析传感器及生物成像等方面的应用价值日渐突显,引起了研究者们的极大关注。特别是稀土近红外荧光材料已发展成一种新兴的荧光标记材料,并有希望替代有机染料和量子点应用于生物分析和医学成像。基于稀土近红外发光的荧光探针具有低自荧光背景、宽斯托克斯位移、强抑制光漂白、深层穿透组织和短暂分辨的优势,有潜力成为高灵敏度、高选择性的检测手段。利用稀土离子制备的各种荧光材料,如上转换纳米晶、介孔材料、脂基胶体、离子液体、离子胶体、金属有机框架等,由于荧光敏化机理不同,其近红外荧光性能也各有千秋。然而,稀土近红外荧光的真正挑战仍是提高近红外发光的量子效率。本文结合近红外荧光领域的最新进展,综述了不同的稀土近红外荧光设计思路,介绍了各种近红外稀土荧光功能材料,阐述了稀土离子在近红外荧光功能材料中的优势,并展望了稀土近红外荧光材料的发展前景。  相似文献   

19.
A novel luminescent microporous lanthanide metal–organic framework (Ln‐MOF) based on a urea‐containing ligand has been successfully assembled. Structural analysis revealed that the framework features two types of 1D channels, with urea N?H bonds projecting into the pores. Luminescence studies have revealed that the Ln‐MOF exhibits high sensitivity, good selectivity, and a fast luminescence quenching response towards Fe3+, CrVI anions, and picric acid. In particular, in the detection of Cr2O72? and picric acid, the Ln‐MOF can be simply and quickly regenerated, thus exhibiting excellent recyclability. To the best of our knowledge, this is the first example of a multi‐responsive luminescent Ln‐MOF sensor for Fe3+, CrVI anions, and picric acid based on a urea derivative. This Ln‐MOF may potentially be used as a multi‐responsive regenerable luminescent sensor for the quantitative detection of toxic and harmful substances.  相似文献   

20.
This work demonstrates luminescence resonance energy transfer (LRET) sensors based on lanthanide‐doped nanoparticles as donors (D) and gold nanoparticles as acceptors (A), combined through electrostatic interactions between the oppositely charged nanoparticles. Negatively charged lanthanide‐doped nanoparticles, YVO4:Eu and LaPO4:Ce,Tb, with high luminescence quantum yield and good water‐solubility, are synthesized through a polymer‐assisted hydrothermal method. Positively charged polyhedral and spherical gold nanoparticles exhibit surface plasmon resonance (SPR) bands centered at 623 and 535 nm, respectively. These bands overlap well with the emission of the Eu3+ and Tb3+ ions within the lanthanide nanoparticles. Herein, the gold nanoparticles are synthesized through a seed‐mediated cetyltrimethylammonium bromide (CTAB)‐assisted method. The assemblies of the oppositely charged donors and acceptors are developed into LRET‐based sensors exhibiting a donor quenching efficiency close to 100 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号