首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazine‐3‐thione‐5‐one, HAMTTO, with silver (I) nitrate in methanol led under deprotonation to the polymeric compound [(AMTTO)Ag]n. The coordination polymer {[Ag(HAMTTO)]ClO4}n ( 1 ) is synthesized from the reaction of the latter polymeric compound with perchloric acid. Both compounds were characterized by elemental analysis and IR spectroscopy. Single‐crystal X‐ray diffraction studies on compound 1 showed that HAMTTO acts as a bidentate ligand and chelates the silver atom via its hydrazine nitrogen atom and its sulfur atom. Crystal data for 1 at ?90 °C: space group P21, Z = 2, a = 629.3(1), b = 748.7(1), c = 1071.7(1) pm, β = 98.28(1)°, R1 = 0.0533.  相似文献   

2.
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carboxylic acid group and the formation of a neutral chiral two‐dimensional polymer network, poly[[{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are pentacoordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same molecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one‐dimensional coordination polymers catena‐poly[[bis[nitratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena‐poly[bis[perchloratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again pentacoordinated by three biotin molecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexafluoridophosphate (PF6) and hexafluoridoantimonate (SbF6), gave the chiral double‐stranded helical structures catena‐poly[[silver(I)‐bis{μ2‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena‐poly[[[{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)]‐μ2‐{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetrahedral coordination environment, coordinated by four biotin molecules via two S atoms, and by two carboxy O atoms of two different molecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin molecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetrahedral to AgS2O3 square‐pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid‐state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two‐ and three‐dimensional networks, which are further stabilized by C—H...X (X = O, F, S) interactions, and by N—H...F interactions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three‐dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.  相似文献   

3.
The title compound, C7H9O4P, obtained as a by‐product of the reaction between Lawesson's reagent, (I), and CH3I, can be recognized as the final product of the S/O interchange reaction at the P atom of (I). Hydro­gen bonds of type P—O—H?O=P link mol­ecules into helical chains and form ten‐membered hydrogen‐bonded rings with the graph‐set notation R(10). Weaker intermolecular contacts between P—O and a phenyl H atom link the chains into a three‐dimensional lattice. The parent benzene­phospho­nic acid [Weakley (1976). Acta Cryst. B 32 , 2889–2890] does not adopt an analogous structure, but its arsenic analogue [Shimada (1960). Bull. Chem. Soc. Jpn, 33 , 301–304] does and can be regarded as isostructural. We rationalize these three structures in terms of their significant intermolecular interactions.  相似文献   

4.
Trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes [Ag3(μ‐dppm)3n‐SR)2](ClO4) [n = 2, R = C6H4Cl‐4 ( 1 ) and C{O}Ph ( 2 ); n = 3, R = tBu ( 3 )], pentanuclear silver(I) thiolate complex [Ag5(μ‐dppm)43‐SC6H4NO2‐4)4](PF6) ( 4 ), and hexanuclear silver(I) thiolate complexes [Ag6(μ‐dppm)43‐SR)4]Y2 [Y = ClO4, R =C6H4CH3‐4 ( 5 ) and C10H7 (2‐naphthyl) ( 7 ); Y = PF6, R = C6H4OCH3‐4( 6 )], were synthesized [dppm = bis(diphenylphosphanyl)methane] and their crystal structures as well as photophysical properties were studied. In the solid state at 77 K, trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes 1 and 2 exhibit luminescence at 470–523 nm, tentatively attributed to originate from the 3IL (intraligand) of thiolate or thiocarboxylate ligands, whereas hexanuclaer silver(I) thiolate complexes 5 and 7 produce dual emission, in which high‐energy emission is tentatively attributed to come from the 3IL of thiolate ligands and low‐energy emission is tentatively assigned to come from the admixture of metal ··· metal bond‐to‐ligand charge‐transfer (MMLCT) and metal‐centered (MC) excited states.  相似文献   

5.
The crystal structures of 2‐oxo‐2‐phenyl‐N‐[(R)‐1‐phenylethyl]acetamide, C16H15NO2, (I), and N,N‐dimethyl‐2‐(1‐naphthyl)‐2‐oxoacetamide, C14H13NO2, (II), were determined in an attempt to understand the reason for the lack of Yang photocyclization in their respective crystals. In the case of (I), the long distance between the O atom of the carbonyl group and the γ‐H atom, and between the C atom of the carbonyl group and the γ‐C atom, preclude Yang photocyclization. For (II), the deviation of the γ‐H atom from the plane of the carbonyl group and interactions between the naphthalene rings are regarded as possible reasons for the chemical inertia. The two independent molecules of (I) differ in their conformation. N—H...O hydrogen bonds link molecules of (I) into chains extended along the b axis.  相似文献   

6.
The silver(I)‐catalyzed synthesis picture of axially chiral allenes based on propargylamines has been outlined using density functional theory (DFT) method for the first time. Our calculations find that, the coordination of silver(I) into triple bond of propargylamines at anti‐position of nitrogen shows a stronger activation on the triple bond than that at cis‐position, which is favorable for the subsequent hydrogen transfer. The NBO charge analysis for the hydrogen transfer affirms the experimental speculation that this step is a hydride transfer process. The energy barrier of the anti‐periplanar elimination of vinyl‐silver is 26.9 kJ·mol?1 lower than that of the syn‐periplanar elimination, supporting that (?)‐allene is the main product of this reaction. In a word, the most possible route for this reaction is that the silver(I) coordinates into the triple bond of propargylamines at anti‐position of nitrogen, then the formed silver(I) complex undergoes a hydride transfer to give a vinyl‐silver, finally the vinyl‐silver goes through an anti‐periplanar elimination to give (?)‐allene. The hydride transfer with the energy barrier of 44.8 kJ·mol?1 is the rate‐limiting step in whole catalytic process. This work provides insight into why this reaction has a very high enantioselectivity.  相似文献   

7.
The title compounds, 3a,9a‐trans‐9,9a‐trans‐4,4‐di­methyl‐9‐phenyl‐2,3,3a,4,9,9a‐hexa­hydro­benzo­[f]­indene, C21H24, (I), and 3a,4‐trans‐3a,9a‐cis‐9,9a‐trans‐4‐methoxy‐9‐phenyl‐2,3,3a,4,9,9a‐hexa­hydro­benzo­[f]­indene, C20H22O, (II), are products of the photoinduced electron‐transfer reaction of 1,1‐di­phenyl‐1,n‐alka­dienes. The molecular structures are in good agreement with those proposed from the reaction mechanisms. The central rings of the fused systems of both compounds take chair and boat conformations in (I) and (II), respectively. There are no remarkable short contacts shorter than the sum of the van der Waals radii in the crystals, but some weak C—H?π interactions are found.  相似文献   

8.
Four Lewis‐base stabilized N‐silver(I) succinimide complexes of type [Ln·Rm·AgNC4H4O2] (L = N,N,N′,N′‐tetramethylethylenediamine (TMEDA), n = 1, m = 0, 2a ; L = P(OEt)3, n = 2, m = 0, 2b ; L = PPh3, m = 0, n = 2, 2c ; L = P(OMe)3, R = TMEDA, n = 1, m = 1, 2d ) were prepared by a “one‐pot” synthesis methodology and characterized. The molecular structures of 2a and 2c have been determined by using X‐ray single crystal analysis. Complex 2a exists as ion pair {[Ag(TMEDA)2]+[Ag(NC4H4O2)2]} in the solid state and complex 2c is a monomer with the three‐coordinate silver atom. Complex 2b was used as precursor in the deposition of silver for the first time by using MOCVD technique. The silver films obtained were characterized using scanning electron microscopy (SEM) and energy‐dispersion X‐ray analysis (EDX). SEM and EDX studies show that the dense and homogeneous silver films could be obtained.  相似文献   

9.
The geometry of racemic methyl 2‐(4‐methyl‐2‐thio­xo‐2,3‐di­hydro­thia­zol‐3‐yl­oxy)­propanoate, C8H11NO3S2, (I), is characterized by a distorted heterocyclic five‐membered ring and an enantiomorphic N‐alkoxy substituent, which is inclined at an angle of −68.8° to the thia­zole­thione plane in (M)‐(I). The unit cell consists of a 1:1 ratio of R,P‐ and S,M‐configured mol­ecules of (I). The combination of a P configuration at the N—O axis and an R configuration at the asymmetric propanoate Cβ atom on one side, and an S,M configuration on the other side, is considered to originate from steric interactions. The largest substituent at the asymmetric propanoate Cβ atom, i.e. the methoxycarbonyl group, resides above the methyl substituent; the medium‐sized propanoate γ‐methyl substituent points in the opposite direction with respect to the N—O bond, whereas the H atom is located above the C=S double bond of the thiazolethione subunit.  相似文献   

10.
The syntheses, characterizations and in vitro cytotoxities of seven soluble silver (I) compounds (1–7) with 2,2′‐bipyridine (bpy), 5,5′‐dimethyl‐2,2′‐bipyridine (dmbpy) and 1, 10‐phenanthroline (phen) are described. Two of the complexes, [Ag(dmbpy)(NO3)] (1) and [Ag(dmbpy)]ClO4(2), have been structurally established by single‐crystal X‐ray diffraction, which reveals the silver(I) atom in compound 1 is in a Y‐shape coordination geometry with two N atoms (av. Ag? N = 227.8 pm) from a chelate dmbpy ligand and an O atom (Ag? O=221.8(4) pm) from a monodentate nitrate. The Ag(I) atom in compound 2 is three‐coordinated by three N atoms, two of which are from a chelate dmbpy, and one from an acetonitrile ligand. The seven compounds showed strong cytotoxities in vitro to both normal and carcinoma cells.  相似文献   

11.
In the title compound, C29H35N2O2P, the stereogenic C center α to the P atom, formed during the Pudovik condensation reaction between a deprotonated chiral diaza­phosphole and benz­aldehyde, has disordered substituents, giving a mixture of Cα‐R and Cα‐S diastereoisomers. Moreover, this compound crystallizes with two independent mol­ecules in the asymmetric unit. The observed configuration at the Cα atom is 0.741 (6)‐S mixed with 0.259 (6)‐R, indicating diastereoisomeric enrichment during crystallization. Data from solution and solid‐state studies consistently point to an epimerization process at the Cα atom.  相似文献   

12.
The structures of two compounds which are intermediates in the synthesis of phenanthroindolizidine alkaloids have been determined. (8bS,13aS,14R,14aR)‐8b,9,11,12,13,13a,14,14a‐Octa­hydro‐14‐hydroxy‐2,3,6,7‐tetra­methoxy­dibenzo­[f,h]pyrrolo[1,2‐b]­isoquinolin‐11‐one acetone solvate, C24H27NO6·C3H6O, (II), crystallizes in a chiral space group with one solvent mol­ecule (acetone) present in the asymmetric unit. On the other hand, (8bS,13aS,14S,14aR)‐8b,9,11,12,13,13a,14,14a‐octa­hydro‐14‐hydroxy‐2,3,6,7‐tetra­methoxy­dibenzo­[f,h]pyrrolo[1,2‐b]­isoquinolin‐11‐one, C24H27NO6, (III), crystallizes in a centrosymmetric space group with two mol­ecules in the asymmetric unit and with no solvent present. The two mol­ecules in the asymmetric unit of (III) are structurally the same. Compounds (II) and (III) are epimers at the C atom carrying the OH group; otherwise they are very similar in structure.  相似文献   

13.
Crystals of 5‐hydroxy‐6‐methyl‐2‐pyridone, (I), grown from a variety of solvents, are invariably trigonal (space group R); these are 5‐hydroxy‐6‐methyl‐2‐pyridone acetone 0.1667‐solvate, C6H7NO2·0.1667C3H6O, (Ia), and 6‐methyl‐5‐hydroxy‐2‐pyridone propan‐2‐ol 0.1667‐solvate, C6H7NO2·0.1667C3H8O, (Ib), and the forms from methanol, (Ic), water, (Id), benzonitrile, (Ie), and benzyl alcohol, (If). They incorporate channels running the length of the c axis that contain extensively disordered solvent molecules. A solvent‐free sublimed powder of 5‐hydroxy‐6‐methyl‐2‐pyridone microcrystals is essentially isostructural. Inversion‐related host molecules interact via pairs of N—H...O hydrogen bonds to form R22(8) dimers. Six of these dimers form large R126(42) puckered rings, in which the O atom of each N—H...O hydrogen bond is also the acceptor in an O—H...O hydrogen bond that involves the 5‐hydroxy group. The large R126(42) rings straddle the axes and form stacked columns viaπ–π interactions between inversion‐related molecules of (I) [mean interplanar spacing = 3.254 Å and ring centroid–centroid distance = 3.688 (2) Å]. The channels are lined by methyl groups, which all point inwards to the centre of the channels.  相似文献   

14.
The 1:1 proton‐transfer compounds of l ‐tartaric acid with 3‐aminopyridine [3‐aminopyridinium hydrogen (2R,3R)‐tartrate dihydrate, C5H7N2+·C4H5O6·2H2O, (I)], pyridine‐3‐carboxylic acid (nicotinic acid) [anhydrous 3‐carboxypyridinium hydrogen (2R,3R)‐tartrate, C6H6NO2+·C4H5O6, (II)] and pyridine‐2‐carboxylic acid [2‐carboxypyridinium hydrogen (2R,3R)‐tartrate monohydrate, C6H6NO2+·C4H5O6·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium–carboxyl N+—H...O hydrogen‐bonding interaction, four‐centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N—H...O association in (III) is with a water O‐atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head‐to‐tail C(7) hydrogen‐bonded chain substructures commonly associated with 1:1 proton‐transfer hydrogen tartrate salts. These chains are extended into two‐dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three‐dimensional hydrogen‐bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O‐atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl–carboxyl O—H...O hydrogen bonds [O...O = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter‐sheet association. This series of heteroaromatic Lewis base–hydrogen l ‐tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two‐dimensional hydrogen‐bonded hydrogen tartrate or hydrogen tartrate–water sheet substructures which are expanded into three‐dimensional frameworks via peripheral cation bifunctional substituent‐group crosslinking interactions.  相似文献   

15.
A one‐dimensional AgI coordination complex, catena‐poly[[silver(I)‐μ‐{2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol‐κ2N2:N3}] perchlorate monohydrate], {[Ag(C19H15N3O)]ClO4·H2O}n, was synthesized by the reaction of 2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol (L) with silver perchlorate. In the complex, the L ligands are arranged alternately and link AgI cations through one benzimidazole N atom and the N atom of the pyridine ring, leading to an extended zigzag chain structure. In addition, the one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions and π–π stacking interactions. The complex exhibits photoluminescence in acetonitrile solution, with an emission maximum at 390 nm, and investigation of the thermal stability reveals that the network structure is stable up to 650 K.  相似文献   

16.
In the Diels–Alder reaction, the preferred addition of dienes syn to the O atom in cross‐conjugated cyclo­hexadienones containing an oxa‐­spiro ring system is observed. The two structures reported here, namely rel‐(1R,4aR,9S,9aS,10R)‐4a,9,9a,10‐tetra­hydro‐9,10‐di­phenyl­spiro­[9,10‐epoxy­anthra­cene‐1(4H),2′‐oxiran]‐4‐one, C27H20O3, and rel‐(1R,4aS,9R,9aS,10S)‐4a,9,9a,10‐tetra­hydro‐9,10‐di­phenyl­spiro­[9,10‐epoxy­anthracene‐1(4H),2′‐oxetane]‐4‐one, C28H22O3, are the minor and sole products, respectively, of the reactions of di­phenyl­isobenzo­furan with two slightly different cyclo­hexadienones. These structures differ in the size of the oxa‐­spiro ring, by one C atom, and in the relative configuration at the spiro­cyclic ring C atom, leading to some minor conformational differences between the two compounds.  相似文献   

17.
Asymmetric Catalysis. 155 [1] (Cymene)Ruthenium Halfsandwich Complexes with Pyrroleoxazoline Ligands — Synthesis, Stereochemistry, Catalysis The (cymene)ruthenium halfsandwich complexes K1 and K2 with chiral pyrroleoxazoline ligands were synthesized and characterized. The complexes form diastereomers, which only differ in the metal configuration. Complex K1 crystallized as the pure diastereomer SRu, SC4, RC5. In solution epimerization SRu, SC4, RC5 ? RRu, SC4, RC5 occurred via change of the configuration at the ruthenium atom. The half‐life for the first‐order reaction at 0.4 °C in CD2Cl2 was 50.6 min. Thus, the two diastereomers equilibrate at room temperature. The equilibrium mixtures of K1 und K2 were used as catalysts for the transfer hydrogenation of acetophenone and for the Diels‐Alder reaction of cyclopentadiene with methacrolein. Enantiomeric excesses of up to 60 % ee were achieved.  相似文献   

18.
A DFT study of various model systems has addressed the interference of catalytic chain transfer (CCT) as a function of the R2 substituent in the atom‐transfer radical polymerization (ATRP) of styrene catalyzed by [FeCl2(R1N?C(R2)?C(R2)?NR1)] complexes. All model systems used R1=CH3 in place of the experimental Cy and tBu substituents and 1‐phenylethyl in place of the polystyrene (PS) chain. A mechanistic investigation of 1) ATRP activation, 2) radical trapping in organometallic‐mediated radical polymerization (OMRP), and 3) pathways to the hydride CCT intermediate was conducted with a simplified system with R2=H. This study suggests that CCT could occur by direct hydrogen‐atom transfer without any activation barrier. Further analysis of more realistic models with R2=p‐C6H4F or p‐C6H4NMe2 suggests that the electronic effect of the aryl para substituents significantly alters the ATRP activation barrier. Conversely, the hydrogen‐atom‐transfer barrier is essentially unaffected. Thus, the greater ATRP catalytic activity of the p‐NMe2 system makes the background CCT process less significant. The DFT study also compares the [FeCl2(R1N?C(R2)?C(R2)?NR1)] systems with a diaminobis(phenolato) derivative for which the CCT process shows even greater accessibility but has less incidence because of faster ATRP chain growth and interplay with a more efficient OMRP trapping. The difference between the two systems is attributed to destabilization of the FeII catalyst by the geometric constraints of the tetradentate diaminobis(phenolato) ligand.  相似文献   

19.
The potential‐energy surfaces of the reactions of dirhodium tetracarboxylate (Rh2II,II) catalyzed nitrene (NR) insertion into C H bonds were examined by a DFT computational study. A pure Becke exchange functional (B88) rather than a hybrid exchange functional (B3, BHandH) was found to be appropriate for the calculation of the energy difference between the singlet and triplet Rh2II,II–NH nitrene species. Rh2II,II–NR1 (R1=(S)‐2‐methyl‐1‐butylformyl) is thermodynamically more favorable with a free energy lower than that of Rh2II,II–N(PhI)R1. The singlet and triplet states of Rh2II,II–NR1 have similar stability. Singlet Rh2II,II–NR1 undergoes a concerted NR insertion into the C H bond with simultaneous formation of the N H and N C bonds during C H bond cleavage; triplet Rh2II,II–NR1 undergoes H atom abstraction to produce a diradical, followed by subsequent bond formation by diradical recombination. The singlet pathway is favored over the triplet in the context of the free energy of activation and leads to the retention of the chirality of the C atom in the NR insertion product. The reactivities of the C H bonds toward the nitrene‐insertion reaction follow the order tertiary>secondary>primary. Relative reaction rates were calculated for the six reaction pathways examined in this work.  相似文献   

20.
The reaction of copper(I) chloride with 6‐aza‐2‐thiothymine (ATT, 1 ) and triphenylphosphane in methanol/chloroform gives [(ATT)CuCl(PPh3)] ( 2 ) as a neutral complex. [(ATT)Ag(NO3)(PPh3)2]·MeOH ( 3 ) can be obtained by the reaction of 1 with silver(I) nitrate and triphenylphosphane in methanol/chloroform in excellent yields and the single crystals of 3 can be obtained from acetonitril solution. Both complexes were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at —80 °C: space group I2/a with a = 1859.3(1), b = 1143.2(1), c = 2208.2(1) pm, β = 104.84(1)°, Z = 8, R1 = 0.0355 and for 3 at —80 °C: space group P21/c with a = 1344.1(1), b = 1553.6(1), c = 1977, 3(3) pm, β = 105.26(1)°, Z = 4, R1 = 0.0436.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号