首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A diradical approach to obtain stable organic dyes with intense absorption around λ=1100 nm is reported. The para‐ and meta‐quinodimethane‐bridged BODIPY dimers BD‐1 and BD‐2 were synthesized and were found to have a small amount of diradical character. These molecules exhibited very intense absorption at λ=1088 nm (?=6.65×105 M ?1 cm?1) and 1136 nm (?=6.44×105 M ?1 cm?1), respectively, together with large two‐photon‐absorption cross‐sections. Structural isomerization induced little variation in their diradical character but distinctive differences in their physical properties. Moreover, the compounds showed a selective fluorescence turn‐on response in the presence of the hydroxyl radical but not with other reactive oxygen species.  相似文献   

2.
The photoluminescence spectra of a series of 5‐substituted pyridyl‐1,2,3‐triazolato PtII homoleptic complexes show weak emission tunability (ranging from λ=397–408 nm) in dilute (10?6 M ) ethanolic solutions at the monomer level and strong tunability in concentrated solutions (10?4 M ) and thin films (ranging from λ=487–625 nm) from dimeric excited states (excimers). The results of density functional calculations (PBE0) attribute this “turn‐on” sensitivity and intensity in the excimer to strong Pt–Pt metallophilic interactions and a change in the excited‐state character from singlet metal‐to‐ligand charge transfer (1MLCT) to singlet metal‐metal‐to‐ligand charge transfer (1MMLCT) emissions in agreement with lifetime measurements.  相似文献   

3.
Twenty‐four D‐A′–π‐A dyes were rapidly synthesized through a one‐pot three‐component Suzuki–Miyaura coupling reaction, which was assisted by microwave irradiation. We measured the absorption spectra, electrochemical properties, and solar‐cell performance of all the synthesized dyes. The D5 πA4 dye contained our originally designed rigid and nonplanar donor and exerted the highest efficiency at 5.4 %. The short‐circuit current (Jsc) was the most important parameter for the conversion efficiency (η) in the case of the organic D‐A′‐π‐A dyes. Optimal ranges for the D‐A′‐π‐A dyes were observed for high values of Jsc/λmax at λ=560–620 nm, an optical‐absorption edge of λ=690–790 nm, and EHOMO and ELUMO values of <1.14 and ?0.56 to ?0.76 V, respectively.  相似文献   

4.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

5.
We report the synthesis of two 2‐(4′‐pyridyl‐N‐oxide)‐substituted hemithioindigos (HTIs). We probed their photoisomerization by using UV/Vis and 1H NMR spectroscopy techniques. Light irradiation at λ=450 nm provoked the isomerization of the HTI Z isomer to the E counterpart to a large extent (≈80 % at the photostationary state). 1H NMR titration experiments revealed the formation of thermodynamically and kinetically stable 1:1 inclusion complexes of the (Z)‐HTI isomers with a super aryl‐extended host (association constant>104 m ?1). Photoirradiation at λ=450 nm of the inclusion complexes induced the isomerization of the bound HTI N‐oxide to afford the (E)‐HTI?calix[4]pyrrole complex. We determined accurate association constant values for the 1:1 inclusion complexes of the (Z)‐ and (E)‐HTI isomers by using isothermal titration calorimetry experiments. The results showed that the stability constants of the (E)‐HTI complexes were 2.2–2.8‐fold lower than those of the (Z)‐HTI counterparts, which explains the lack of light‐induced release of the former to the bulk solution.  相似文献   

6.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

7.
The well‐known photochromic tautomerism of 2‐(2,4‐dinitrobenzyl)pyridine ( 1 ; CH; Scheme 1) was re‐investigated by flash photolysis in aqueous solution in view of its potential application as a light‐activated proton pump. Irradiation of 1 yields the enamine tautomer NH (λmax=520 nm) that rapidly equilibrates with its conjugate base CNO? (λmax=420 nm). The pH–rate profile for the first‐order decay of NH and CNO? provides a direct determination of the acidity constant of NH, pK =5.94±0.12 (I=0.1M ) and serves to clarify the mechanisms of proton transfer prevailing in aqueous solutions. The acidity constant of protonated 1 (CHNH+), pK =4.18±0.02, was determined by spectrophotometric titration.  相似文献   

8.
By using pentyl‐linked bis(rhodamine)‐derived tetra‐siloxane (PRh‐Si4) as the organosilica precursor, highly ordered PRh‐bridged periodic mesoporous organosilicas (PRhPMOs) were prepared. When excited at λ=500 nm, the PRhPMO suspension that contained metal ions showed two separate emission peaks at λ=550 and 623 nm. The first peak, located at λ=550 nm, was due to ring‐opening of the spiro structure in the rhodamine moiety and the second, located at λ=623 nm, originated from fluorescent aggregates of the PRh units embedded in the silica framework of the PRhPMO. By using the different intensity ratios of the two fluorescence signals (FI550/623), PRhPMOs could be used as turn‐ON type fluorescent ratiometric chemosensors for Cu2+. Furthermore, based on the single‐exciton theory, it was deduced that the fluorescent aggregates formed were of the J‐type and had a coplanar configuration. Consequently, PRhPMOs display a longer fluorescence lifetime and greater fluorescent quantum yield than the respective monomers dissolved in solution, which is consistent with the experimental results.  相似文献   

9.
We report the synthesis and characterization of a three‐dimensional tetraphenylethene‐based octacationic cage that shows host–guest recognition of polycyclic aromatic hydrocarbons (e.g. coronene) in organic media and water‐soluble dyes (e.g. sulforhodamine 101) in aqueous media through CH???π, π–π, and/or electrostatic interactions. The cage?coronene exhibits a cuboid internal cavity with a size of approximately 17.2×11.0×6.96 Å3 and a “hamburger”‐type host–guest complex, which is hierarchically stacked into 1D nanotubes and a 3D supramolecular framework. The free cage possesses a similar cavity in the crystalline state. Furthermore, a host–guest complex formed between the octacationic cage and sulforhodamine 101 had a higher absolute quantum yield (ΦF=28.5 %), larger excitation–emission gap (Δλex‐em=211 nm), and longer emission lifetime (τ=7.0 ns) as compared to the guest (ΦF=10.5 %; Δλex‐em=11 nm; τ=4.9 ns), and purer emission (ΔλFWHM=38 nm) as compared to the host (ΔλFWHM=111 nm).  相似文献   

10.
MOGHIMI Ali 《中国化学》2008,26(10):1831-1836
A novel, simple, sensitive and effective method has been developed for preconcentration of thallium on N,N’-bis(3-methylsalicylidene)-ortho-phenylenediamine (MSOPD) adsorbent in a pH range 5.0—10.0, prior to its spectrophotometric determination, based on the oxidation of bromopyrogallol red at λ=520 nm. This method makes it possible to quantitize thallium in a range of 3.6×10-9 to 2.0×10-5 mol/L, with a detection limit (S/N=3) of 1.42×10-9 mol/L. This procedure has been successfully applied to determine the ultra trace levels of thallium in the environmental samples, free from the interference of some diverse ions. The precision, expressed as relative standard deviation of three measurements, is better than 2.9%.  相似文献   

11.
An advanced light‐induced avenue to monodisperse sequence‐defined linear macromolecules via a unique photochemical protocol is presented that does not require any protection‐group chemistry. Starting from a symmetrical core unit, precision macromolecules with molecular weights up to 6257.10 g mol?1 are obtained via a two‐monomer system: a monomer unit carrying a pyrene functionalized visible light responsive tetrazole and a photo‐caged UV responsive diene, enabling an iterative approach for chain growth; and a monomer unit equipped with a carboxylic acid and a fumarate. Both light‐induced chain growth reactions are carried out in a λ‐orthogonal fashion, exciting the respective photosensitive group selectively and thus avoiding protecting chemistry. Characterization of each sequence‐defined chain (size‐exclusion chromatography (SEC), high‐resolution electrospray ionization mass spectrometry (ESI‐MS), and NMR spectroscopy), confirms the precision nature of the macromolecules.  相似文献   

12.
Aryl‐substituted phenanthroimidazoles (PIs) have attracted tremendous attention in the field of organic light‐emitting diodes (OLEDs), because they are simple to synthesize and have excellent thermal properties, high photoluminescence quantum yields (PLQYs), and bipolar properties. Herein, a novel blue–green emitting material, (E)‐2‐{4′‐[2‐(anthracen‐9‐yl)vinyl]‐[1,1′‐biphenyl]‐4‐yl}‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (APE‐PPI), containing a t‐APE [1‐(9‐anthryl)‐2‐phenylethene] core and a PI moiety was designed and synthesized. Owing to the PI skeleton, APE‐PPI possesses high thermal stability and a high PLQY, and the compound exhibits bipolar transporting characteristics, which were identified by single‐carrier devices. Nondoped blue–green OLEDs with APE‐PPI as the emitting layer show emission at λ=508 nm, a full width at half maximum of 82 nm, a maximum brightness of 9042 cd m?2, a maximum current efficiency of 2.14 cd A?1, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.55). Furthermore, a white OLED (WOLED) was fabricated by employing APE‐PPI as the blue–green emitting layer and 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7‐tetramethyljulolidin‐4‐yl‐vinyl)‐4H‐pyran (DCJTB) doped in tris‐(8‐hydroxyquinolinato)aluminum (Alq3) as the red–green emitting layer. This WOLED exhibited a maximum brightness of 10029 cd m?2, a maximum current efficiency of 16.05 cd A?1, CIE coordinates of (0.47, 0.47), and a color rendering index (CRI) of 85. The high performance of APE‐PPI‐based devices suggests that the t‐APE and PI combination can potentially be used to synthesize efficient electroluminescent materials for WOLEDs.  相似文献   

13.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1?xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g?1 h?1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

14.
New soluble MoS2 nanosheets covalently functionalized with poly(N‐vinylcarbazole) (MoS2–PVK) were in situ synthesized for the first time. In contrast to MoS2 and MoS2/PVK blends, both the solution of MoS2–PVK in DMF and MoS2–PVK/poly(methyl methacrylate) (PMMA) film show superior nonlinear optical and optical limiting responses. The MoS2–PVK/PMMA film shows the largest nonlinear coefficients (βeff) of about 917 cm GW?1 at λ=532 nm (cf. 100.69 cm GW?1 for MoS2/PMMA and 125.12 cm GW?1 for MoS2/PVK/PMMA) and about 461 cm GW?1 at λ=1064 nm (cf. ?48.92 cm GW?1 for MoS2/PMMA and 147.56 cm GW?1 for MoS2/PVK/PMMA). A larger optical limiting effect, with thresholds of about 0.3 GW cm?2 at λ=532 nm and about 0.5 GW cm?2 at λ=1064 nm, was also achieved from the MoS2–PVK/PMMA film. These values are among the highest reported for MoS2‐based nonlinear optical materials. These results show that covalent functionalization of MoS2 with polymers is an effective way to improve nonlinear optical responses for efficient optical limiting devices.  相似文献   

15.
A blue fluorescent polymer based on poly(vinyl carbazole) (PVK) and terfluorene, combined to make a chemical hybrid at the carbazole unit (PVK‐TF), is fully characterized in this study. PVK‐TF shows useful emission features, such as peaks at 400, 420, 437, 460, and 496 nm, depending on the processing conditions. It possesses a relatively high triplet energy level (2.23 eV), electrochemical stability, good film‐forming ability, and morphological stability. Based on this blue fluorescent material, highly efficient orange phosphorescent polymer light‐emitting diodes (PLEDs) were fabricated with a maximum efficiency of 21.99 cd A?1, and a maximum luminance of 19552.3 cd m?2. Single‐layer hybrid white PLEDs were developed, with a high color rendering index of 81.9 that emitted across the whole visible spectrum from 380 to 780 nm, corresponding to the Commission International de L'Eclairage coordinates x, y values of around (0.38, 0.40) and CCT = 3774, with a maximum current efficiency of 10.69 cd A?1, and a maximum brightness of 15723.3 cd m?2. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 587–595  相似文献   

16.
The synthesis, crystal and electronic structures, and one‐ and two‐photon absorption properties of two quadrupolar fluorenyl‐substituted tetraphenyl carbo‐benzenes are described. These all‐hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo‐benzene core (C?C bonds for 3 a , C?C?C?C expanders for 3 b ), exhibit quasi–superimposable one‐photon absorption (1PA) spectra but different two‐photon absorption (2PA) cross‐sections σ2PA. Z‐scan measurements (under NIR femtosecond excitation) indeed showed that the C?C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM=10?50 cm4 s molecule?1 photon?1) at λ=800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum‐over‐state estimations of σ2PA(λi), in which λi=2 hc/Ei, h is Planck’s constant, c is the speed of light, and Ei is the energy of the 2PA‐allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z‐scan results.  相似文献   

17.
Despite the success of thermally activated delayed fluorescent (TADF) materials in steering the next generation of organic light‐emitting diodes (OLEDs), effective near infrared (NIR) TADF emitters are still very rare. Here, we present a simple and extremely high electron‐deficient compound, 5,6‐dicyano[2,1,3]benzothiadiazole (CNBz), as a strong electron‐accepting unit to develop a sufficiently strong donor‐acceptor (D?A) interaction for NIR emission. End‐capping with the electron‐donating triphenylamine (TPA) unit created an effective D?A?D type system, giving rise to an efficient NIR TADF emissive molecule (λem=750 nm) with a very small ΔEST of 0.06 eV. The electroluminescent device using this NIR TADF emitter exhibited an excellent performance with a high maximum radiance of 10020 mW Sr?1 m?2, a maximum EQE of 6.57% and a peak wavelength of 712 nm.  相似文献   

18.
A label‐free, non‐derivatization chemiluminescence resonance energy transfer (CRET) detection platform has been developed for the detection of the non‐fluorescent small molecule 6‐mercaptopurine. This CRET process arose from a chemiluminescent (CL) donor–acceptor system in which the reaction of bis(2,4,6‐trichlorophenyl)oxalate (TCPO)–H2O2–fluorescein (maximum emission at 521.6 nm) served as the donor and gold nanoparticles (AuNPs, maximum absorption at 520.0 nm) served as the acceptor. This process caused a significant decrease in the CL signal of the TCPO–H2O2–fluorescein reaction. The presence of 6‐mercaptopurine induced an aggregation of AuNPs with the assistance of Cu2+ ions through cooperative metal–ligand interactions that was accompanied by a distinct change in color and optical properties. The maximum absorption band of the AuNPs was red‐shifted to 721.0 nm and no longer overlapped with the CL spectrum of the reaction; as a result, the CL signal was restored. This CRET system exhibited a wide linear range, from 9.0 nmol L?1 to 18.0 μmol L?1, and a low detection limit (0.62 nmol L?1) for 6‐mercaptopurine. The applicability of the proposed CRET system was evaluated by analysis of 6‐mercaptopurine in spiked human plasma samples.  相似文献   

19.
A series of cyclometalated PdII complexes that contain π‐extended R? C^N^N? R′ (R? C^N^N? R′=3‐(6′‐aryl‐2′‐pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax=584–632 nm) and in solution (λmax=533–602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585–602 nm upon an increase in the complex concentration in solutions. These PdII complexes can act as photosensitizers for the light‐induced aerobic oxidation of amines. In the presence of 0.1 mol % PdII complex, secondary amines can be oxidized to the corresponding imines with substrate conversions and product yields up to 100 and 99 %, respectively. In the presence of 0.15 mol % PdII complex, the oxidative cyanation of tertiary amines could be performed with product yields up to 91 %. The PdII complexes have also been used to sensitize photochemical hydrogen production with a three‐component system that comprises the PdII complex, [Co(dmgH)2(py)Cl] (dmgH=dimethylglyoxime; py=pyridine), and triethanolamine, and a maximum turnover of hydrogen production of 175 in 4 h was achieved. The excited‐state electron‐transfer properties of the PdII complexes have been examined.  相似文献   

20.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub‐2 nm size and near‐unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy‐atom‐rich organic fluorophores is mitigated through a silane‐molecule‐mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long‐term photostability. Taking advantage of the low‐power excitation (0.5 μW), prolonged singlet‐state lifetime, and negligible depletion‐induced re‐excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm?2), and ultra‐high lateral resolution (ca. λem/28).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号