首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A novel and direct synthesis of 1‐aryl‐5‐arylvinyl‐tetrazoles from easily prepared propargylic alcohols and TMSN3 is developed in the presence of TMSCl under mild conditions (TMS=trimethylsilyl). The process involves an allenylazide intermediate, followed by a C?C‐bond cleavage and C?N‐bond formation to afford the desired products. Moreover, this method offers a good functional‐group applicability and can be scaled‐up to grams (yield up to 85 %).  相似文献   

2.
Boranes with the general formula of HBR2 have been found to undergo a facile 1,1‐hydroboration reaction with pyrido[1,2‐a]isoindole ( A ), resulting in insertion of a BR2 unit into a C? N bond and the formation of a variety of BN heterocycles. Investigation on the thermal reactivity of the BN heterocycles revealed that these molecules have two distinct and competitive thermal elimination pathways: HBR2 elimination (or retro‐hydroboration) versus R? H elimination, depending on the R group on the B atom and the chelate backbone. Mechanistic aspects of these highly unusual reactions have been established from both experimental and computational evidence. Adduct formation between HBR2 and A was found to be the key intermediate in 1,1‐hydroboration of A .  相似文献   

3.
Organoborane compounds are among the most commonly employed intermediates in organic synthesis and serve as crucial precursors to alcohols, amines, and various functionalized molecules. A simple palladium‐based system catalyzes the conversion of primary C(sp3)? H bonds in functionalized complex organic molecules into alkyl boronate esters. Amino acids, amino alcohols, alkyl amines, and a series of bioactive molecules can be functionalized with the use of readily available and removable directing groups in the presence of commercially available additives, simple ligands, and oxygen (O2) as the terminal oxidant. This approach represents an economic and environmentally friendly method that could find broad applications.  相似文献   

4.
The reactions of the Group 4 metallocene alkyne complexes, [Cp*2M(η2‐Me3SiC2SiMe3)] ( 1 a : M=Ti, 1 b : M=Zr, Cp*=η5‐pentamethylcyclopentadienyl), with the ferrocenyl nitriles, Fc?C?N and Fc?C?C?C?N (Fc=Fe(η5‐C5H5)(η5‐C5H4)), is described. In case of Fc?C?N an unusual nitrile–nitrile C?C homocoupling was observed and 1‐metalla‐2,5‐diaza‐cyclopenta‐2,4‐dienes ( 3 a , b ) were obtained. As the first step of the reaction with 1 b , the nitrile was coordinated to give [Cp*2Zr(η2‐Me3SiC2SiMe3)(N?C‐Fc)] ( 2 b ). The reactions with the 3‐ferrocenyl‐2‐propyne‐nitrile Fc?C?C?C?N lead to an alkyne–nitrile C?C coupling of two substrates and the formation of 1‐metalla‐2‐aza‐cyclopenta‐2,4‐dienes ( 4 a , b ). For M=Zr, the compound is stabilized by dimerization as evidenced by single‐crystal X‐ray structure analysis. The electrochemical behavior of 3 a , b and 4 a , b was investigated, showing decomposition after oxidation, leading to different redox‐active products.  相似文献   

5.
The thermally stable [(tBuMe2Si)2M] (M=Zn, Hg) generate R3Si. radicals in the presence of [(dmpe)Pt(PEt3)2] at 60–80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn ( 2 a and 2 b ), M=Hg ( 3 a and 3 b )) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt? MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn ( 5 ), Hg ( 6 )) whose structures were determined by EPR spectroscopy and DFT calculations.  相似文献   

6.
The modes of interaction of donor‐stabilized Group 13 hydrides (E=Al, Ga) were investigated towards 14‐ and 16‐electron transition‐metal fragments. More electron‐rich N‐heterocyclic carbene‐stabilized alanes/gallanes of the type NHC?EH3 (E=Al or Ga) exclusively generate κ2 complexes of the type [M(CO)42‐H3E?NHC)] with [M(CO)4(COD)] (M=Cr, Mo), including the first κ2 σ‐gallane complexes. β‐Diketiminato (′nacnac′)‐stabilized systems, {HC(MeCNDipp)2}EH2, show more diverse reactivity towards Group 6 carbonyl reagents. For {HC(MeCNDipp)2}AlH2, both κ1 and κ2 complexes were isolated, while [Cr(CO)42‐H2Ga{(NDippCMe)2CH})] is the only simple κ2 adduct of the nacnac‐stabilized gallane which can be trapped, albeit as a co‐crystallite with the (dehydrogenated) gallylene system [Cr(CO)5(Ga{(NDippCMe)2CH})]. Reaction of [Co2(CO)8] with {HC(MeCDippN)2}AlH2 generates [(OC)3Co(μ‐H)2Al{(NdippCme)2CH}][Co(CO)4] ( 12 ), which while retaining direct Al?H interactions, features a hitherto unprecedented degree of bond activation in a σ‐alane complex.  相似文献   

7.
A mild three‐step solution strategy is developed to prepare Ag? MS (M=Zn, Cd) nanoheterostructures composed of MS nanorods with silver tips. First, Ag2S? MS heterostructures are synthesized by following a solution–liquid–solid mechanism with Ag2S nanoparticles as catalysts, then the Ag2S sections of the heterostructures are converted into silver nanoparticles by selective extraction of sulfur. Notably, for the prepared Ag? CdS heterostructures, the localized surface plasmon resonance of silver remarkably intensifies the photoluminescence of CdS by enhancing the excitation light absorption, which is beneficial for potential applications of CdS nanoparticles in the fields of biolabeling, light‐emitting diodes, and so forth. The strategy reported herein would be useful for designing and fabricating other metal–semiconductor hybrid nanostructures with desirable performances.  相似文献   

8.
A series of cyclometalated PdII complexes that contain π‐extended R? C^N^N? R′ (R? C^N^N? R′=3‐(6′‐aryl‐2′‐pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax=584–632 nm) and in solution (λmax=533–602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585–602 nm upon an increase in the complex concentration in solutions. These PdII complexes can act as photosensitizers for the light‐induced aerobic oxidation of amines. In the presence of 0.1 mol % PdII complex, secondary amines can be oxidized to the corresponding imines with substrate conversions and product yields up to 100 and 99 %, respectively. In the presence of 0.15 mol % PdII complex, the oxidative cyanation of tertiary amines could be performed with product yields up to 91 %. The PdII complexes have also been used to sensitize photochemical hydrogen production with a three‐component system that comprises the PdII complex, [Co(dmgH)2(py)Cl] (dmgH=dimethylglyoxime; py=pyridine), and triethanolamine, and a maximum turnover of hydrogen production of 175 in 4 h was achieved. The excited‐state electron‐transfer properties of the PdII complexes have been examined.  相似文献   

9.
Carbon–carbon bond reductive elimination from gold(III) complexes are known to be very slow and require high temperatures. Recently, Toste and co‐workers have demonstrated extremely rapid C?C reductive elimination from cis‐[AuPPh3(4‐F‐C6H4)2Cl] even at low temperatures. We have performed DFT calculations to understand the mechanistic pathway for these novel reductive elimination reactions. Direct dynamics calculations inclusive of quantum mechanical tunneling showed significant contribution of heavy‐atom tunneling (>25 %) at the experimental reaction temperatures. In the absence of any competing side reactions, such as phosphine exchange/dissociation, the complex cis‐[Au(PPh3)2(4‐F‐C6H4)2]+ was shown to undergo ultrafast reductive elimination. Calculations also revealed very facile, concerted mechanisms for H?H, C?H, and C?C bond reductive elimination from a range of neutral and cationic gold(III) centers, except for the coupling of sp3 carbon atoms. Metal–carbon bond strengths in the transition states that originate from attractive orbital interactions control the feasibility of a concerted reductive elimination mechanism. Calculations for the formation of methane from complex cis‐[AuPPh3(H)CH3]+ predict that at ?52 °C, about 82 % of the reaction occurs by hydrogen‐atom tunneling. Tunneling leads to subtle effects on the reaction rates, such as large primary kinetic isotope effects (KIE) and a strong violation of the rule of the geometric mean of the primary and secondary KIEs.  相似文献   

10.
The impact of redox non‐innocence (RNI) on chemical reactivity is a forefront theme in coordination chemistry. A diamide diimine ligand, [{‐CH?N(1,2‐C6H4)NH(2,6‐iPr2C6H3)}2]n (n=0 to ?4), (dadi)n, chelates Cr and Fe to give [(dadi)M] ([ 1 Cr(thf)] and [ 1 Fe]). Calculations show [ 1 Cr(thf)] (and [ 1 Cr]) to have a d4 Cr configuration antiferromagnetically coupled to (dadi)2?*, and [ 1 Fe] to be S=2. Treatment with RN3 provides products where RN is formally inserted into the C? C bond of the diimine or into a C? H bond of the diimine. Calculations on the process support a mechanism in which a transient imide (imidyl) aziridinates the diimine, which subsequently ring opens.  相似文献   

11.
A one‐step synthetic method was developed for allylation of benzamides using Ni(COD)2/RCO2H and [Ni(μ‐H2O)(OOCCMe3)2(HOOCCMe3)2]2 ( A′ ) catalytic system. Efficient, well‐defined, air and moisture‐stable Ni–pivalate complex was isolated and employed in catalytic allylation. The influence of solvent on product selectivity was also investigated.  相似文献   

12.
A theoretical study of the conformational profile of two diphosphines, PH2?PH2 and PH2?PHF, is carried using second‐order Møller–Plesset perturbation theory (MP2) computational methods. The chiral minima found are used to build homo‐ and heterochiral dimers. Six minima are found for the (PH2?PH2)2 dimers and 27 for the (PH2?PHF)2 dimers. Pnicogen and hydrogen bonds, the non‐covalent forces that stabilize the complexes, are characterized by Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) methodologies. Those with several pnicogen bonds are more stable than those with hydrogen bonds. The chirodiastaltic energies amount to a total of 1.77 kJ mol?1 for the Ra:Ra versus Ra:Sa (PH2?PH2)2 dimers, 0.81 kJ mol?1 for the RSa:RSa versus RSa:SRa (PH2?PHF)2 dimers, and 2.93 kJ mol?1 for the RRa:RRa versus RRa:SSa (PH2?PHF)2 dimers. In the first and second cases, the heterochiral complex is favored whereas in the third case, the homochiral complex is favored.  相似文献   

13.
The cobalt‐catalyzed alkoxylation of C(sp2)? H bonds in aromatic and olefinic carboxamides has been developed. The reaction proceeded under mild conditions in the presence of Co(OAc)2?4H2O as the catalyst and tolerates a wide range of both alcohols and benzamide substrates, including even olefinic carboxamides. In addition, this reaction is the first example of the direct alkoxylation of alkenes through C? H bond activation.  相似文献   

14.
Tuning the nature of the linker in a L~BHR phosphinoborane compound led to the isolation of a ruthenium complex stabilized by two adjacent, δ‐C? H and ε‐Bsp2? H, agostic interactions. Such a unique coordination mode stabilizes a 14‐electron “RuH2P2” fragment through connected σ‐bonds of different polarity, and affords selective B? H, C? H, and B? C bond activation as illustrated by reactivity studies with H2 and boranes.  相似文献   

15.
Reactions of the zinc(I) complex [Zn2(Mesnacnac)2] (Mesnacnac=[(2,4,6‐Me3C6H2)NC(Me)]2CH) with solid K3Bi2 dissolved in liquid ammonia yield crystals of the compound K4[ZnBi2]?(NH3)12 ( 1 ), which contains the molecular, linear heteroatomic [Bi? Zn? Bi]4? polyanion ( 1 a ). This anion represents the first example of a three‐atomic molecular ion of metal atoms being iso(valence)‐electronic to CO2 and being synthesized in solution. The analogy of the discrete [Bi? Zn? Bi]4? anion and the polymeric [(ZnBi4/2)4?] unit to monomeric CO2 and polymeric SiS2 is rationalized.  相似文献   

16.
A computational study of the interaction half‐sandwich metal fragments (metal = Re/W, electron count = d6), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N‐heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta‐GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron‐withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Complexes with terminal phosphanido (M? PR2) functionalities are believed to be crucial intermediates in new catalytic processes involving the formation of P? P and P? C bonds. We showcase here the isolation and characterization of mononuclear phosphanide rhodium complexes ([RhTp(H)(PR2)L]) that result from the oxidative addition of secondary phosphanes, a reaction that was also explored computationally. These compounds are active catalysts for the dehydrocoupling of PHPh2 to Ph2P? PPh2. The hydrophosphination of dimethyl maleate and the unactivated olefin ethylene is also reported. Reliable evidence for the prominent role of mononuclear phosphanido rhodium species in these reactions is also provided.  相似文献   

18.
A metal‐free, Lewis acid promoted intramolecular aminocyanation of alkenes was developed. B(C6F5)3 activates N‐sulfonyl cyanamides, thus leading to a formal cleavage of the N? CN bonds in conjunction with vicinal addition of sulfonamide and nitrile groups across an alkene. This method enables atom‐economical access to indolines and tetrahydroquinolines in excellent yields, and provides a complementary strategy for regioselective alkene difunctionalizations with sulfonamide and nitrile groups. Labeling experiments with 13C suggest a fully intramolecular cyclization pattern due to the lack of label scrambling in double crossover experiments. Catalysis with Lewis acid is realized and the reaction can be conducted under air.  相似文献   

19.
Nanocatalysts Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 supported on multi‐walled carbon nanotubes (MWCNTs) were successively synthesized by the chemical reduction method in the glycol‐water mixture solvent. Transmission electron microscopy results show that the prepared Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 nanoparticles are uniformly dispersed on the surface of MWCNTs. The average particle sizes of the nanocatalysts are 3.5–3.8 nm. Electroactivity of the prepared catalysts towards oxidation of ethanol, 1‐propanol, 2‐propanol, n‐butanol, iso‐butanol and sec‐butanol (C2? C4 alcohols) in alkaline medium was studied by cyclic voltammetry and chronoamperometry. The current density obtained for the electrooxidation of C2? C4 alcohols depends on the catalysts and the various structures of the alcohols. Addition of Sn or/and Ni to Pd nanoparticles enhances the electroactivity of the Pd/MWCNT catalyst. Furthermore, the ternary Pd8Sn1Ni1/MWCNT catalyst presents the highest electroactivity for the oxidation of C2? C4 alcohols among the prepared catalysts. Electrocatalytic activity order among propanol isomers and butanol isomers is as follows respectively: 1‐propanol > 2‐propanol, and n‐butanol > iso‐butanol > sec‐butanol > tert‐butanol. This is consistent with the Mulliken charge value of the carbon atom bonded with hydroxyl group in the corresponding alcohol molecule.  相似文献   

20.
A procedure for chemoselectively manipulating the strong aliphatic C?F bond with direct transformation into a C?N bond under mild conditions is reported. The activation and subsequent substitution of primary alkyl fluorides is mediated by La[N(SiMe3)2]3, and results in high to excellent yields of tertiary amines. The methodology displays high selectivity towards the C(sp3)?F bond, and a variety of secondary amines are applicable as nucleophiles. Mechanistic investigations reveal a reaction that is first order with respect to [La[N(SiMe3)2]3], [R1R2NH], and [alkyl fluoride], and a 6‐membered cyclic transition state is proposed. In addition, 1H NMR spectroscopy shows that La[N(SiMe3)2]3 is the active species involved in the substitution and that protonolysis of the amine, yielding La[NR1R2]3, lowers the reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号