首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Treatment of the osmabenzene [Os{CHC(PPh3)CHC(PPh3)CH} Cl2(PPh3)2]Cl ( 1 ) with excess 8‐hydroxyquinoline produces monosubstituted osmabenzene [Os{CH C(PPh3) CHC(PPh3)CH}(C9H6NO)Cl(PPh3)]Cl ( 2 ) or disubstituted osmabenzene [Os{CHC(PPh3)CHC(PPh3)CH} (C9H6NO)2]Cl ( 3 ) under different reaction conditions. Osmabenzene 2 evolves into cyclic η2‐allene‐coordinated complex [Os{CH?C(PPh3)CH=(η2‐C?CH2)}(C9H6NO)(PPh3)2]Cl ( 4 ) in the presence of excess PPh3 and NaOH, presumably involving a P? C bond cleavage of the metallacycle. Reaction of 4 with excess 8‐hydroxyquinoline under air affords the SNAr product [(C9H6NO)Os{CHC(PPh3)CHCHC} (C9H6NO)(PPh3)]Cl ( 5 ). Complex 4 is fairly reactive to a nucleophile in the presence of acid, which could react with water to give carbonyl complex [Os{CH?C(PPh3)CH?CH2}(C9H6NO) (CO)(PPh3)2]Cl ( 6 ). Complex 4 also reacts with PPh3 in the presence of acid and results in a transformation to [Os {CHC(PPh3)CHCHC}(C9H6NO)Cl (PPh3)2]Cl ( 7 ) and [Os{CH?C(PPh3) CH=(η2‐C?CH(PPh3))}(C9H6NO) Cl(PPh3)]Cl ( 8 ). Further investigation shows that the ratio of 7 and 8 is highly dependent on the amount of the acid in the reaction.  相似文献   

2.
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ).  相似文献   

3.
Alkali‐resistant osmabenzene [(SCN)2(PPh3)2Os{CHC(PPh3)CHCICH}] ( 2 ) can undergo nucleophilic aromatic substitution with MeOH or EtOH to give cine‐substitution products [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHCR}] (R=OMe ( 3 ), OEt( 4 )) in the presence of strong alkali. However, the reactions of compound 2 with various amines, such as n‐butylamine and aniline, afford five‐membered ring species, [(SCN)2(PPh3)2Os{CH?C(PPh3)CH?C(CH?NHR′)}] (R′=nBu( 8 ), Ph( 9 )), in addition to the desired cine‐substitution products, [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHC(NHR′)}] (R′=nBu( 6 ), Ph( 7 )), under similar reaction conditions. The mechanisms of these reactions have been investigated in detail with the aid of isotopic labeling experiments and density functional theory (DFT) calculations. The results reveal that the cine‐substitution reactions occur through nucleophilic addition, dissociation of the leaving group, protonation, and deprotonation steps, which resemble the classical “addition‐of‐nucleophile, ring‐opening, ring‐closure” (ANRORC) mechanism. DFT calculations suggest that, in the reaction with MeOH, the formation of a five‐membered metallacycle species is both kinetically and thermodynamically less favorable, which is consistent with the experimental results that only the cine‐substitution product is observed. For the analogous reaction with n‐butylamine, the pathway for the formation of the cine‐substitution product is kinetically less favorable than the pathway for the formation of a five‐membered ring species, but is much more thermodynamically favorable, again consistent with the experimental conversion of compound 8 into compound 6 , which is observed in an in situ NMR experiment with an isolated pure sample of 8 .  相似文献   

4.
The hydrides [MH(O2CCF3)(CO)(PPh3)2] (M = Ru or Os) react with disubstituted acetylenes PhCCPh and PhCCMe to afford vinylic products [M{C(Ph)CHPh}(O2CCF3)(CO)(PPh3)2] and [M{C(Ph)CHMe}(O2CCF3)(CO) (PPh3)2]/[M{C(Me)CHPh}(O2CCF3)(CO)(PPh3)2] respectively. Acidolysis of these products with trifluoroacetic acid in cold ethanol liberates cis-stilbene and cis-PhHCCHMe respectively thus establishing the cis-stereochemistry of the vinylic ligands. The complexes [M(O2CCF3)2(CO)(PPh3)2] formed during the acidolysis step undergo facile alcoholysis followed by β-elimination of aldehyde to regenerate the parent hydrides [MH(O2CCF3)(CO)(PPh3)2] and thereby complete a catalytic cycle for the transfer hydrogenation of acetylenes. The molecular structure of the methanol-adduct intermediate, [Ru(O2CCF3)2(MeOH)(CO)(PPh3)2] has been determined by X-ray methods and shows that the coordinated methanol is involved in H-bonding with the monodentate trifluoroacetate ligand [MEO-H---OC(O)CF3; O...O = 2.54 Å]. The hydrides [MH(O2CCF3)(CO) (PPh3)2]react with 1,4-diphenylbutadiyne to afford the complexes [M{C(CCPh)CHPh} (O2CCF3)(CO)(PPh3)2]. The ruthenium product, which has also been obtained by treatment of [RuH(O2CCF3)(CO)(PPh3)2] with phenylacetylene, has been shown by X-ray diffraction methods to contain a 1,4-diphenylbut-1-en-3-yn-2-yl ligand. The osmium complexes [Os(O2CCF3)2(CO)(PPh3)2], [OsH(O2CCF3)(CO)(PPh3)2] and [Os{C(CCPh)CHPh}(O2CCF3)(CO)(PPh3)2] all serve as catalysts for the oligomerisation of phenylacetylene. Acetylene reacts with [Ru(O2CCF3)2(CO)(PPh3)2] in ethanol to afford the vinyl complex [Ru(CHCH2)(O2CCF3)(CO)(PPh3)2].  相似文献   

5.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

6.
We studied the reactivity of an osmium vinyl complex containing a coordinated hydroxyl group OsCl2(PPh3)2[CH=C(PPh3)CHPh(OH)] (1) toward bidentate ligand 1,4-bis(diphenylphosphino)butane (DPPB),acid ligand (CO),base (Cs2CO3) and heat.Two osmium vinyl complexes OsCl2(dppb)[CH=C(PPh3)CHPh(OH)](2) and OsCl2(CO)2(PPh3)[CH=C(PPh 3)CHPh(OH)] (3),as well as two relatively rare phosphonium-containing osmafuran complexes Os(2-OCOO)(PPh3)2[CHC(PPh3)CPhO](4) and OsCl2 (PPh3)2[CHC(PPh3)CPhO](5),were obtained in high yields from these reactions.All products were characterized by NMR spectroscopy,elemental analysis,and their structures were further confirmed by single crystal X-ray diffraction.  相似文献   

7.
Rhenium Compounds Containing Heterocyclic Thiols – Syntheses and Structures Reactions of trans‐[ReOCl3(PPh3)2] with 1,3‐thiazoline‐2‐thiol (thiazSH), pyridine‐2‐thiol (pyrSH) or pyrimidine‐2‐thiol (pyrmSH) result in the formation of rhenium(V) oxo complexes or rhenium(III) species depending on the conditions applied. mer‐[ReOCl3(thiazSH)(OPPh3)], trans‐[ReCl3(PPh3)(thiazSH)2], [ReO(2‐propO)(PPh3)Cl(pyrS‐S,N)], cis‐[ReCl2(PPh3)2(pyrS‐S,N)] and [ReCl2(PPh3)2(pyrmS‐S,N)] have been isolated from such reactions and structurally characterized. cis‐[ReCl2(PPh3)2(pyrS‐S,N)] and [ReCl2(PPh3)2(pyrmS‐S,N)] are obtained in better yields by ligand substitution on trans‐[ReCl3(MeCN)(PPh3)2]. The reaction between (n‐Bu4N)[ReOCl4] and purine‐6‐thiol (purinSH) gives the oxo‐bridged [O{ReO(purinS‐S,N)2}2].  相似文献   

8.
A series of new [NiX(S2P{O-c-Hex}2)(PPh3)](X = Cl, Br, I and NCS)(1)–(4) and [Ni(NCS)(S2P{OR}2)(PPh3)][R =n-Pr (5), i-Pr (6)] complexes has been synthesized and characterized by elemental analyses, f.i.r., i.r., u.v.–vis., 1H-, 13C{1H}- and 31P{1H}-n.m.r. spectra, magnetochemical and conductivity measurements. A single crystal X-ray analysis of [Ni(NCS)(S2P{O-n-Pr}2)(PPh3)](5) reveals the molecular structure of the complex and confirms a square-planar geometry around the central atom of nickel with the NCS anion coordinated via the nitrogen atom.  相似文献   

9.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

10.
Rare‐earth‐metal borohydrides are known to be efficient catalysts for the polymerization of apolar and polar monomers. The bis‐borohydrides [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) have been synthesized by two different synthetic routes. The lanthanum and the lutetium complexes were prepared from [Ln(BH4)3(THF)3] and K{CH(PPh2NSiMe3)2}, whereas the yttrium analogue was obtained from in situ prepared [{CH(PPh2NSiMe3)2}YCl2]2 and NaBH4. All new compounds were characterized by standard analytical/spectroscopic techniques, and the solid‐state structures were established by single‐crystal X‐ray diffraction. The ring‐opening polymerization (ROP) of ε‐caprolactone initiated by [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) was studied. At 0 °C the molar mass distributions determined were the narrowest values (M?w/M?n=1.06–1.11) ever obtained for the ROP of ε‐caprolactone initiated by rare‐earth‐metal borohydride species. DFT investigations of the reaction mechanism indicate that this type of complex reacts in an unprecedented manner with the first B? H activation being achieved within two steps. This particularity has been attributed to the metallic fragment based on the natural bond order analysis.  相似文献   

11.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

12.
Treatment of Pd(PPh3)4 with phenylchlorothionoformate, PhOC(S)Cl, in dichloromethane at ?20 °C produces the phenyloxythiocarbonyl complex [Pd(PPh3)21‐C(S)OPh}(Cl)], 1 . The 31P{1H} NMR spectrum of 1 shows the dissociation of either the chloride or the triphenylphosphine ligand to form complex [Pd(PPh3)22‐SCOPh)][Cl], 2 or the dipalladium complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 . Continuous stirring of the dichloromethane solution of 1 at room temperature for 4 h forms the dipalladinum complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 as the final product. Respective reactions of 1 and Et2NCS2Na or dppa {bis(diphenylphosphino)amine} gives complex [Pd(PPh3){η1‐C(S)OPh}(η2‐S2CNEt2)], 4 or [Pd(PPh3){η1‐C(S)OPh}(η2‐dppa)][Cl], 5 . Complex 1 is determined by single‐crystal X‐ray diffraction and crystallized in the monoclinic space group P21 with Z = 4. The cell dimensions of 1 are as follows: a = 9.5613(1) Å, b = 33.6732(3) Å, c = 12.2979(1) Å.  相似文献   

13.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

14.
Camphenylphosphonic acid RPO3H2, prepared by the literature reaction of PCl5 with camphene, has been characterized by a single-crystal X-ray diffraction study. The compound crystallizes with a double chain structure formed by connected eight-membered hydrogen-bonded rings. Reaction of RPO3H2 with cis-[PtCl2(PPh3)2] and excess silver(I) oxide in refluxing dichloromethane gives the platinum(II) phosphonate complex [Pt{O3PR}(PPh3)2]. 31P{1H} NMR spectroscopic characterization of [Pt{O3PR}(PPh3)2] shows that the two PPh3 ligands are inequivalent due to asymmetry of the camphenyl group. An X-ray diffraction study on the platinum complex shows that the PC–H bond is directed toward the four-membered ring, resulting in the terpene group pointing away from the ring, in contrast to the previously reported structure of the saturated camphanylphosphonate complex. The differences are discussed in terms of steric interactions involving the phosphonate ligands.  相似文献   

15.
Alkylation of [Pt2(µ-S)2(PPh3)4] with 2,4-dinitrophenylhydrazone-functionalized alkylating agents XC6H4C{=NNHC6H3(NO2)2}CH2Br (X?=?H, Ph) gives monoalkylated cations [Pt2(µ-S){µ-SCH2C{=NNHC6H3(NO2)2}C6H4X}(PPh3)4]+. An X-ray diffraction study on [Pt2(µ-S){µ-SCH2C{=NNHC6H3(NO2)2}Ph}(PPh3)4]BPh4 shows the crystal to be the Z isomer, with the phenyl ring and NHC6H3(NO2)2 groups mutually trans. 1H- and 31P{1H} NMR spectroscopic methods indicate a mixture of Z (major) and E (minor) isomers in solution, which slowly convert mainly to the E isomer. Reaction of [Pt2(µ-S)2(PPh3)4] with the dinitrophenylhydrazone of chloroacetone [ClCH2C{=NNH(C6H3(NO2)2}Me] and NaBPh4 gives [Pt2(µ-S){µ-SCH2C{=NNHC6H3(NO2)2}Me}(PPh3)4]BPh4, which exists as a single (E) isomer.  相似文献   

16.
Perfluorocarboxylic acids (RFCOOH) (RF = CF3,C2F5 and (for Rh) C6F5) react with the species [M(NO)2(PPh3)2] (M = Ru, Os) and [M′(NO)(PPh3)3] (M′ = Rh, Ir) to yield new nitrosyl complexes [Ru(OCORF)3(NO)(PPh3)2], [OsH(OCORF)2(NO)(PPh3)2], [Os(OCORF)(NO)2(PPh3)2][OCORF], [Ir(OCORF)(NO)(PPh3)2][OCORF] and [Rh(OCORF)2(NO)(PPh3)2].  相似文献   

17.
Unprecedented silyl‐phosphino‐carbene complexes of uranium(IV) are presented, where before all covalent actinide–carbon double bonds were stabilised by phosphorus(V) substituents or restricted to matrix isolation experiments. Conversion of [U(BIPMTMS)(Cl)(μ‐Cl)2Li(THF)2] ( 1 , BIPMTMS=C(PPh2NSiMe3)2) into [U(BIPMTMS)(Cl){CH(Ph)(SiMe3)}] ( 2 ), and addition of [Li{CH(SiMe3)(PPh2)}(THF)]/Me2NCH2CH2NMe2 (TMEDA) gave [U{C(SiMe3)(PPh2)}(BIPMTMS)(μ‐Cl)Li(TMEDA)(μ‐TMEDA)0.5]2 ( 3 ) by α‐hydrogen abstraction. Addition of 2,2,2‐cryptand or two equivalents of 4‐N,N‐dimethylaminopyridine (DMAP) to 3 gave [U{C(SiMe3)(PPh2)}(BIPMTMS)(Cl)][Li(2,2,2‐cryptand)] ( 4 ) or [U{C(SiMe3)(PPh2)}(BIPMTMS)(DMAP)2] ( 5 ). The characterisation data for 3 – 5 suggest that whilst there is evidence for 3‐centre P?C?U π‐bonding character, the U=C double bond component is dominant in each case. These U=C bonds are the closest to a true uranium alkylidene yet outside of matrix isolation experiments.  相似文献   

18.
(Z)‐1,2‐Diaryl‐1,2‐bis(pinacolatoboryl)ethenes underwent double‐cross‐coupling reactions with 1‐bromo‐2‐[(Z)‐2‐bromoethenyl]arenes in the presence of [Pd(PPh3)4] as a catalyst and 3 M aqueous Cs2CO3 as a base in THF at 80 °C. The double‐coupling reaction gave multisubstituted naphthalenes in good to high yields. Annulation of 1,2‐bis(pinacolatoboryl)arenes with bromo(bromoethenyl)arenes in the presence of a catalyst system that consisted of [Pd2(dba)3] (dba=dibenzylideneacetone) and 2‐dicyclohexylphosphino‐2′,6′‐dimethoxybiphenyl (SPhos) under the same conditions produced fused phenanthrenes in good to high yields. The first annulation coupling occurred regiospecifically at the bromoethenyl moiety. This procedure is applicable to the facile synthesis of polysubstituted anthracenes, benzothiophenes, and dibenzoanthracenes through a double annulation pathway by using the corresponding dibromobis[(Z)‐2‐bromoethenyl]benzenes as diboryl coupling partners.  相似文献   

19.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [Co(NH3)6][Os(SCN)6] From the mixture of the linkage isomers [Os(NCS)n(SCN)6–n]3–, n = 0–2, pure [Os(SCN)6]3– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of [Co(NH3)6][Os(SCN)6] (trigonal, space group R 3, a = 12.368(2), c = 11.830(2) Å, Z = 3) reveals that the thiocyanate ligands are exclusively S‐coordinated with the Os–S distance of 2.388 Å and the Os–S–C angle of 108.8°. The IR and Raman spectra of (n‐Bu4N)3[Os(SCN)6] are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constant fd(OsS) is 1.42 mdyn/Å.  相似文献   

20.
Five novel coordination polymers, [(Cu(L1)2OH) · Cl · 3H2O] ( 1 ) [L1 = bis(N‐imidazolyl)methane], [Cd(L1)2(NCS)2] ( 2 ), [Zn(L1)2(NCS)2] ( 3 ), [Cu(L1)2(NO3)2] ( 4 ), and [Cu(L2)1.5(NCS)2] ( 5 ) [L2 = 1,4‐bis(N‐imidazolyl)butane] were obtained from self‐assembly of the corresponding metal salts with flexible ligands and their structures were fully characterized by X‐ray diffraction (XRD) analysis, Fourier Transform Infrared (FT‐IR) spectroscopy, elemental analysis and thermogravimetric (TGA) measurements. X‐ray diffraction analyses revealed that complexes 1 , 2 , 3 , and 4 exhibit 1D double‐stranded chain structures, which result from doubly bridged [CuOH], [M(NCS)2] (M = Cd, Zn), and [Cu(NO3)2] units, respectively. The polymeric copper complex 5 displays 1D ladder structure., These complexes, with the exception of complex 1 , are stable up to 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号