首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex of zinc(II) picrate (pic) with bis(N‐allylbenzimidazol‐2‐ylmethyl)aniline (abba), with composition [Zn(abba)2](pic)2, was synthesized and characterized by elemental analysis, electrical conductivity, IR and UV/Vis spectral measurements. The crystal structure of the zinc(II) complex has been determined by single‐crystal X‐ray diffraction. The Zn(II) is bonded to two abba ligands through four benzimidazole nitrogen, resulting in a distorted tetrahedron geometry. The DNA‐binding properties of the ligand and the zinc(II) complex were investigated by electronic absorption, fluorescence spectra and viscosity measurements. The experimental results suggest that the zinc(II) complex binds to DNA in an intercalation mode. In addition, the ligand abba and Zn(II) complex have scavenging effects for hydroxyl radicals and the complex shows stronger scavenging effects for hydroxyl radicals than the ligand.  相似文献   

2.
We report the first bottom‐up synthesis of NBN‐doped zigzag‐edged GNRs (NBN‐ZGNR1 and NBN‐ZGNR2) through surface‐assisted polymerization and cyclodehydrogenation based on two U‐shaped molecular precursors with an NBN unit preinstalled at the zigzag edge. The resultant zigzag‐edge topologies of GNRs are elucidated by high‐resolution scanning tunneling microscopy (STM) in combination with noncontact atomic force microscopy (nc‐AFM). Scanning tunneling spectroscopy (STS) measurements and density functional theory (DFT) calculations reveal that the electronic structures of NBN‐ZGNR1 and NBN‐ZGNR2 are significantly different from those of their corresponding pristine fully‐carbon‐based ZGNRs. Additionally, DFT calculations predict that the electronic structures of NBN‐ZGNRs can be further tailored to be gapless and metallic through one‐electron oxidation of each NBN unit into the corresponding radical cations. This work reported herein provides a feasible strategy for the synthesis of GNRs with stable zigzag edges yet tunable electronic properties.  相似文献   

3.
Bis‐triarylamine 2 and cyclometalated diruthenium 6 (PF6)2 with a linear trans,trans‐urea bridge have been prepared, together with the bis‐triarylamine 3 and cyclometalated diruthenium 8 (PF6)2 with a folded cis,cisN,N‐dimethylurea bridge. The linear or folded conformations of these molecules are supported by single‐crystal X‐ray structures of 2 , 3 , and other related compounds. These compounds display two consecutive anodic redox waves (N . +/0 or RuIII/II processes) with a potential separation of 110–170 mV. This suggests that an efficient electronic coupling is present between two redox termini through the cross‐conjugated urea bridge. The degree of electronic coupling has been investigated by using spectroelectrochemical measurements. Distinct intervalence charge‐transfer (IVCT) transitions have been observed for mixed‐valent (MV) compounds with a linear conformation. The IVCT transitions can also be identified for the folded MV compounds, albeit with a much weaker intensity. DFT results support that the electronic communication occurs by a through‐bond and through‐space pathway for the linear and folded compounds, respectively. The IVCT transitions of the MV compounds have been reproduced by TDDFT calculations. For the purpose of comparison, a bistriarylamine and a diruthenium complex with an imidazolidin‐2‐one bridge and a urea‐containing mono‐triarylamine and monoruthenium complex have been synthesized and studied.  相似文献   

4.
A photochromic diarylethene, 1,2‐bis(5‐phenyl‐2‐propyl‐3‐thienyl)perfluorocyclopentene ( 1a ), was found to have two polymorphic crystal forms, α‐ and β‐crystals. From X‐ray crystallographic analysis, the space groups of α‐ and β‐crystals were determined to be P21/c and C2/c, respectively. The difference between two crystal forms is ascribed to the orientation of two of four molecules in the unit cell. The thermodynamic phase transition from α‐ to β‐forms occurred via a crystal‐to‐crystal process, as confirmed by differential scanning calorimetry measurements, optical microscopic observations in the reflection mode and under crossed Nicols, and powder X‐ray diffraction measurements. The movement of the molecules in the crystal was evaluated by analyzing the change of face indices before and after the phase transition.  相似文献   

5.
New important aspects of the hydrogen‐bond (H‐bond)‐dynamics‐based switching of electrical conductivity and magnetism in an H‐bonded, purely organic conductor crystal have been discovered by modulating its tetrathiafulvalene (TTF)‐based molecular π‐electron system by means of partial sulfur/selenium substitution. The prepared selenium analogue also showed a similar type of phase transition, induced by H‐bonded deuterium transfer followed by electron transfer between the H‐bonded TTF skeletons, and the resulting switching of the physical properties; however, subtle but critical differences due to sulfur/selenium substitution were detected in the electronic structure, phase transition nature, and switching function. A molecular‐level discussion based on the crystal structures shows that this chemical modification of the TTF skeleton influences not only its own π‐electronic structure and π–π interactions within the conducting layer, but also the H‐bond dynamics between the TTF π skeletons in the neighboring layers, which enables modulation of the interplay between the H‐bond and π electrons to cause such differences.  相似文献   

6.
A series of monoaza‐15‐crown‐5 ethers (2b‐2h) having 4′‐hydroxy‐3′,5′‐disubstituted benzyl groups have been prepared by the Mannich reaction of 2,6‐disubstituted phenols with the corresponding N‐methoxymethylmonoaza‐crown ethers. Competitive transport through a chloroform membrane by 12‐crown‐4 derivatives (lithium, potassium and cesium) and 15‐crown‐5 derivatives (sodium, potassium and cesium) were measured under basic‐source phase and acidic‐receiving phase conditions. All ligands transported size‐matched alkali‐metal cations. Ligands 1h and 2h with two fluorine atoms in the side arm gave higher metal ion transport rates than those of dimethyl‐ (1a and 2a), diisopropyl‐ (1b and 2b), and butylmethyl‐ (1d and 2d) derivatives. X‐ray crystal structures of six alkali metal complexes with monoaza‐12‐crown‐4‐derivatives ( 1b‐LiSCN, 1b‐KSCN, 1c‐NaSCN, 1d‐LiSCN, 1f‐RbSCN and 1h‐LiSCN ) and three alkali metal complexes with 15‐crown‐5 derivatives ( 2b‐KSCN, 2c‐KSCN , and 2e‐KSCN ) along with crystal structures of some new ligands (1b, 1c, 1d, 1f, and 2c) are also reported. These X‐ray analyses indicate that the crystal structures of the alkali metal ion complexes of these new armed‐crown ethers changed depending on the substituents at the 3′‐ and 5′‐positions of the appended hydroxybenzyl arms.  相似文献   

7.
The new mono‐ and binuclear semiquinonato dimethylthallium complexes (Q‐TTF‐SQ)TlMe2 ( 1 ) and Me2Tl(SQ‐TTF‐SQ)TlMe2 ( 2 ) based on di‐o‐quinone with tetrathiafulvalene (TTF) bridge, 4,4′,7,7′‐tetra‐tert‐butyl‐2,2′‐bis‐1,3‐benzodithiol‐5,5′,6,6′‐tetraone Q‐TTF‐Q, were synthesized by the reaction between corresponding mono‐ and di‐sodium semiquinonates (Q‐TTF‐SQ)Na and Na(SQ‐TTF‐SQ)Na and one or two equivalents of Me2TlCl, respectively. The same products could be obtained by the interaction of Q‐TTF‐Q with one or two equivalents of Me3Tl. Complexes 1 and 2 were characterized by IR and electronic absorption spectroscopy, EPR, and magnetic measurements. The molecular structures of 1 and 2 were determined by single‐crystal X‐ray diffraction. It was found that mono‐semiquinonato derivative 1 partially disproportionates into Q‐TTF‐Q and binuclear complex 2 in THF solution. According to variable temperature magnetic susceptibility measurements and EPR data, compound 1 reveals paramagnetic behavior with an S = 1/2 state in the range 50–300 K, whereas compound 2 has an S = 0 ground state as the consequence of antiferromagnetic coupling between semiquinonato moieties realized through the TTF‐bridge.  相似文献   

8.
A new class of exceptionally stable asymmetric N‐heterocyclic germylenes, stannylenes, and plumbylenes has been successfully isolated and characterized by single‐crystal X‐ray diffraction analysis and multinuclear NMR spectroscopy. Their stability results from tetrameric supramolecular aggregation through strong intermolecular Npy→EII (E=Ge, Sn, Pb) interactions involving the nitrogen atom of a neighboring pyridine moiety. The electronic structures and stabilities of the prepared divalent derivatives of Ge, Sn, and Pb in monomeric and aggregated forms are discussed based on theoretical investigations.  相似文献   

9.
In solid‐state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5‐fluorouracil (5FU; systematic name: 5‐fluoro‐1,3‐dihydropyrimidine‐2,4‐dione), namely 5‐fluorouracil–5‐bromothiophene‐2‐carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5‐fluorouracil–thiophene‐2‐carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 22(8) homosynthon (O—H…O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 22(8) motif] via a pair of N—H…O hydrogen bonds. The crystal structures are further stabilized by C—H…O interactions in (II) and C—Br…O interactions in (I). In both crystal structures, π–π stacking and C—F…π interactions are also observed.  相似文献   

10.
《中国化学》2018,36(6):487-490
Two‐electron oxidations of three 1,2‐di(bisphenylamino)‐benzenes afforded a class of nitrogen analogues of o‐quinodimethane. Their electronic structures in the ground state were studied by spectroscopic techniques including EPR and UV‐vis absorption spectroscopy. They have open‐shell singlet ground states with thermally accessible triplet states. One of them ( 1 2+) has been crystalized and isolated. SQUID measurements, single crystal X‐ray diffraction and theoretical calculations show 1 2+ has unexpected non‐Kekulé diradical character, sharply different from o‐quinodimethane.  相似文献   

11.
A series of mononuclear half‐sandwich cyclometallated iridium complexes with Schiff base ligands were synthesized in good yields. Five air‐stable C,N‐chelate mode complexes were obtained smoothly through metal‐mediated C─H bond activation. Treatments of dimeric metal complexes [Cp*IrCl2]2 with ligands L1–L5 afforded the corresponding C,N‐chelate mononuclear half‐sandwich iridium(III) complexes 1 – 5 . These iridium complexes exhibit high catalytic activity for norbornene polymerization. Both steric and electronic effects of the substituted groups have influences on the behaviors of the polymerization process. All complexes were characterized using infrared and NMR spectroscopies and elemental analysis. Molecular structures of complexes 1 , 2 and 5 were further confirmed using single‐crystal X‐ray analysis.  相似文献   

12.
Single crystals of two liquid crystal compounds, 5‐{[4′‐(((pentyl)oxy)‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO5) and 5‐{[(4′‐nonyloxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO9), have been prepared by solution growth technique. The morphologies and structures of A3EO5 and A3EO9 crystals were investigated by wide angle X‐ray diffraction (WXRD), atom force microscope (AFM) and transmission electron microscope (TEM). In contrast to the same series of compounds which have a longer alkyl tail, 5‐{[(4′‐heptoxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO7), 5‐{[(4′‐heptoxy‐4‐biphenylyl)oxy]carbonyl}‐1‐pentyne (A3E′O7) and A3EO9, A3EO5 shows strikingly different crystalline behavior. The former three compounds have only one crystal form, whereas A3EO5 exhibits polymorphism. Specifically, A3EO5 crystals grown from toluene solution show two crystal forms. The first one is crystal I which adopts a monoclinic P112/m space group with unit cell parameters of a?5.79 Å, b?8.34 Å, c?43.92 Å, γ?96°, and the other one is crystal II which adopts a monoclinic P112 space group with unit cell parameters of a?5.55 Å, b?7.38 Å, c?31.75 Å, γ?94°. When using dioxane as the solvent to grow A3EO5 crystal, we can selectively obtain crystal I. A3EO5 melt‐grown crystals also have two crystal forms which derive from crystal I and crystal II, respectively. The different crystalline behavior of the compounds should correlate with their different electron dipole moment resulting from the different length of alkyl tail.  相似文献   

13.
《中国化学会会志》2018,65(8):932-939
1‐(3‐amino‐4‐thia‐1,2‐diazaspiro[4.11]hexadec‐2‐en‐1‐yl)ethan‐1‐one was synthesized and experimentally characterized by using FT‐IR, 1H NMR, 13C NMR, and UV–Vis spectroscopy. The structure of the compound was confirmed by single‐crystal X‐ray diffraction. In the crystal structure, the molecules are linked by pairs of N‐H⋯N hydrogen bonds, forming centrosymmetric dimers with the graph‐set motif. The water molecule also plays an important role in the stabilization of the crystal structure, bridging the dimers to form a two‐dimensional supramolecular network. The molecular geometry, frontier molecular orbitals, vibrational frequencies, electronic properties, and molecular electrostatic potential were calculated using density functional theory (DFT) with the B3LYP/6‐311G(d,p) basis set. Geometric parameters, vibrational assignments, and electronic properties such as calculated energies, excitation energies, and oscillator strengths were compared with the experimental data, and it was seen that the theoretical results support the experimental parameters.  相似文献   

14.
《化学:亚洲杂志》2017,12(15):1889-1894
In this study, a series of triphenylamine derivatives with two 2,6‐diphenylphenoxy radicals ( 2 a – d ), which could be regarded as amine‐inserted diphenoquinones have been synthesized and investigated their structures and electronic properties. The structures of 2 a – d were confirmed by single‐crystal X‐ray analysis, showing the characteristic bond length alternation patterns for closed‐shell quinoids. The solutions of 2 a – d exhibited clear ESR signals even at room temperature, indicating their thermally accessible diradical states. The NMR and ESR measurements showed that the diradical character of 2 a – d were increased in the order of 2 a < 2 b < 2 c < 2 d , well‐reproduced by theoretical calculations. The results of this work strongly suggest that the diradical character of this class of compounds could be tuned by changing the substituent on the central nitrogen atom.  相似文献   

15.
Chemical reactions induced by plasmons achieve effective solar‐to‐chemical energy conversion. However, the mechanism of these reactions, which generate a strong electric field, hot carriers, and heat through the excitation and decay processes, is still controversial. In addition, it is not fully understood which factor governs the mechanism. To obtain mechanistic knowledge, we investigated the plasmon‐induced dissociation of a single‐molecule strongly chemisorbed on a metal surface, two O2 species chemisorbed on Ag(110) with different orientations and electronic structures, using a scanning tunneling microscope (STM) combined with light irradiation at 5 K. A combination of quantitative analysis by the STM and density functional theory calculations revealed that the hot carriers are transferred to the antibonding (π*) orbitals of O2 strongly hybridized with the metal states and that the dominant pathway and reaction yield are determined by the electronic structures formed by the molecule–metal chemical interaction.  相似文献   

16.
Heteroleptic nickel(II) complexes [NiL2L′] of a series of monoanionic and potentially bidentate N‐2‐pyridyl‐sulfonamide ligands [HL] and 2,2′‐bipyridine or 1,10‐Phenanthroline (L′) have been prepared by electrochemical oxidation of a nickel anode in an acetonitrile solution of the ligands. The complexes have been characterized by microanalysis, IR and electronic spectroscopy, magnetic measurements and LSI mass spectrometry. The crystal structure of [Ni(Ms6mepy)2(bipy)] has been determined by x‐ray diffraction and shows the metal in an octahedral NiN6 environment. Octahedral structures are also proposed for the other complexes with the N‐2‐pyridyl‐sulfonamide ligands acting as N,N′ or N, O bidentate systems, depending on the position of the methyl substituent on the pyridine ring.  相似文献   

17.
Pentacyanocyclopentadienide (PCCp?), a stable π‐electronic anion, provided various ion‐pairing assemblies in combination with various cations. PCCp?‐based assemblies exist as single crystals and mesophases owing to interionic interactions with π‐electronic and aliphatic cations with a variety of geometries, substituents, and electronic structures. Single‐crystal X‐ray analysis revealed that PCCp? formed cation‐dependent arrangements with contributions from charge‐by‐charge and charge‐segregated assembly modes for ion pairs with π‐electronic and aliphatic cations, respectively. Furthermore, some aliphatic cations gave dimension‐controlled organized structures with PCCp?, as observed in the mesophases, for which synchrotron XRD analysis suggested the formation of charge‐segregated modes. Noncontact evaluation of conductivity for (C12H25)3MeN+ ? PCCp? films revealed potential hole‐transporting properties, yielding a local‐scale hole mobility of 0.4 cm2 V?1 s?1 at semiconductor–insulator interfaces.  相似文献   

18.
A new series of 3‐(furan‐2‐yl) dibenzo‐diazepin‐1‐one derivatives were synthesized by condensation of 5‐(furan‐2‐yl)‐1,3‐cyclohexanedione, o‐phenylenediamine, and aromatic aldehydes, in which in some of them existed two very close isomer compounds. All the compounds were characterized by IR, MS, 1H NMR, and elemental analysis. Also presented were the crystal structures of 3a , 3b and 3e , which were obtained and determined by X‐ray single‐crystal diffraction.  相似文献   

19.
With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two‐ and three‐dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two‐ and three‐layer systems resulted in the construction of a three‐dimensional supertetrahedral borane crystal structure. The two‐dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three‐dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm−3) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials.  相似文献   

20.
Reaction of 2,4,6‐trichloro‐1,3,5‐triazine with lithiated tetrathiafulvalene (TTF) in stoichiometric conditions, followed by treatment with sodium methanolate, provides mono‐ and bis(TTF)–triazines as new covalently linked (multi)donor–acceptor systems. Single‐crystal X‐ray analyses reveal planar structures for both compounds, with formation of peculiar segregated donor and acceptor stacks for the mono(TTF)–triazine compound, while mixed TTF–triazine stacks establish in the case of the bis(TTF) derivative. Cyclic voltammetry measurements show reversible oxidation of the TTF units, at rather low potential, with no splitting of the oxidation waves in the case of the dimeric TTF, whereas irreversible reduction of the triazine core is observed. Intramolecular charge transfer is experimentally evidenced through solution electronic absorption spectroscopy. Time‐dependent DFT calculations allow the assignment of the charge transfer band to singlet transitions from the HOMO of the donor(s) to the LUMO of the acceptor. Solution EPR measurements correlated with theoretical calculations were performed in order to characterize the oxidized species. In both cases the spectra show very stable radical species and contain a triplet of doublet pattern, in agreement with the coupling of the unpaired electron with the three TTF protons. The dication of the bis(TTF)–triazine is paramagnetic, but no spin–spin exchange interaction could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号