首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 4‐X‐1‐methylpyridinium cationic nonlinear optical (NLO) chromophores (X=(E)‐CH?CHC6H5; (E)‐CH?CHC6H4‐4′‐C(CH3)3; (E)‐CH?CHC6H4‐4′‐N(CH3)2; (E)‐CH?CHC6H4‐4′‐N(C4H9)2; (E,E)‐(CH?CH)2C6H4‐4′‐N(CH3)2) with various organic (CF3SO3?, p‐CH3C6H4SO3?), inorganic (I?, ClO4?, SCN?, [Hg2I6]2?) and organometallic (cis‐[Ir(CO)2I2]?) counter anions are studied with the aim of investigating the role of ion pairing and of ionic dissociation or aggregation of ion pairs in controlling their second‐order NLO response in anhydrous chloroform solution. The combined use of electronic absorption spectra, conductimetric measurements and pulsed field gradient spin echo (PGSE) NMR experiments show that the second‐order NLO response, investigated by the electric‐field‐induced second harmonic generation (EFISH) technique, of the salts of the cationic NLO chromophores strongly depends upon the nature of the counter anion and concentration. The ion pairs are the major species at concentration around 10?3 M , and their dipole moments were determined. Generally, below 5×10?4 M , ion pairs start to dissociate into ions with parallel increase of the second‐order NLO response, due to the increased concentration of purely cationic NLO chromophores with improved NLO response. At concentration higher than 10?3 M , some multipolar aggregates, probably of H type, are formed, with parallel slight decrease of the second‐order NLO response. Ion pairing is dependent upon the nature of the counter anion and on the electronic structure of the cationic NLO chromophore. It is very strong for the thiocyanate anion in particular and, albeit to a lesser extent, for the sulfonated anions. The latter show increased tendency to self‐aggregate.  相似文献   

2.
The nonlinear optical property of new polyester has been studied via second harmonic generation (SHG). The values of electro‐optic coefficients, d33 and d31, of the poled polymer film were 3.15 × 10 ?7 and 1.5 × 10?7 esu, respectively. Thermal behavior of this polyester was studied through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 4‐di‐(2′‐hydroxyethoxy)‐4‐diphenyl‐hydrazonomethyl was synthesized from the reaction of 3,4‐dihydroxy‐4‐diphenyl‐hydrazonomethyl with 2–chloro–1‐ethanol in a 1:2 mole ratio and subsequently reacted with terephthaloyl chloride (TPC) in the presence of pyridine, as catalyst, to produce the new nonlinear polyester. The chemical structures of the resulting monomers and polymer were characterized by CHN analysis, 1H‐NMR, FT‐IR, and UV–Vis spectroscopy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Azo‐containing materials have been proven to possess second‐order nonlinear optical (NLO) properties, but their third‐order NLO properties, which involves two‐photon absorption (2PA), has rarely been reported. In this study, we demonstrate a significant 2PA behavior of the novel azo chromophore incorporated with bilateral diphenylaminofluorenes (DPAFs) as a π framework. The electron‐donating DPAF moieties cause a redshifted π–π* absorption band centered at 470 nm, thus allowing efficient blue‐light‐induced trans‐to‐cis photoisomerization with a rate constant of 2.04×10?1 min?1 at the photostationary state (PSS). The open‐aperture Z‐scan technique that adopted a femtosecond (fs) pulse laser as excitation source shows an appreciably higher 2PA cross‐section for the fluorene‐derived azo chromophore than that for common azobenzene dyes at near‐infrared wavelength (λex=800 nm). Furthermore, the fs 2PA response is quite uniform regardless of the molecular geometry. On the basis of the computational modeling, the intramolecular charge‐transfer (ICT) process from peripheral diphenylamines to the central azo group through a fluorene π bridge is crucial to this remarkable 2PA behavior.  相似文献   

4.
The nonlinear optical properties of a functionalized poly(thiophene azine), namely, poly(3,4‐didodecylthiophene azine), PAZ, at the optical telecommunication wavelength of 1550 nm are investigated by means of the closed‐aperture z‐scan technique in both thin films and solutions. Values of χ(3)=(2.4±0.4)×10?13 esu, n2=(4.0±0.7)×10?15 cm2 W?1, and γ=(4.5±0.7)×10?34 esu are estimated for the third‐order (Kerr) susceptibility, the intensity‐dependent refractive index, and the molecular second hyperpolarizability of solution samples, respectively. A very small dependence on the polymer chain length is found. Markedly higher values of (4.4±1.1)×10?11 esu, (6.6±1.0)×10?13 cm2 W?1, and (5.0±0.8)×10?33 esu are measured for the corresponding quantities in thick (up to 20 μm) polymer films cast on quartz plates. The enhancement of the NLO responses on going from solution to solid samples is attributed to a partially ordered structure and to the presence of interchain interactions leading to greater π‐electron delocalization in the cast polymer films. The results are compared with those previously obtained by using third‐harmonic generation (THG), taking into account that those data were measured under conditions of three‐photon resonance, whereas our z‐scan measurements are fully off‐resonance.  相似文献   

5.
The synthesis of the C2‐symmetrical ligand 1 consisting of two naphthalene units connected to two pyridine‐2,6‐dicarboxamide moieties linked by a xylene spacer and the formation of LnIII‐based (Ln=Sm, Eu, Tb, and Lu) dimetallic helicates [Ln2? 1 3] in MeCN by means of a metal‐directed synthesis is described. By analyzing the metal‐induced changes in the absorption and the fluorescence of 1 , the formation of the helicates, and the presence of a second species [Ln2? 1 2] was confirmed by nonlinear‐regression analysis. While significant changes were observed in the photophysical properties of 1 , the most dramatic changes were observed in the metal‐centred lanthanide emissions, upon excitation of the naphthalene antennae. From the changes in the lanthanide emission, we were able to demonstrate that these helicates were formed in high yields (ca. 90% after the addition of 0.6 equiv. of LnIII), with high binding constants, which matched well with that determined from the changes in the absorption spectra. The formation of the LuIII helicate, [Lu2? 1 3], was also investigated for comparison purposes, as we were unable to obtain accurate binding constants from the changes in the fluorescence emission upon formation of [Sm2? 1 3], [Eu2? 1 3], and [Tb2? 1 3].  相似文献   

6.
A kinetic study on hydrolysis of N‐(2′‐hydroxyphenyl)phthalamic acid ( 1 ), N‐(2′‐methoxyphenyl)phthalamic acid ( 2 ), and N‐(2′‐methoxyphenyl)benzamide ( 3 ) under a highly alkaline medium gives second‐order rate constants, kOH, for the reactions of HO? with 1, 2 , and 3 as (4.73 ± 0.36) × 10?8 at 35°C, (2.42 ± 0.28) × 10?6 and (5.94 ± 0.23) × 10?5 M?1 s?1 at 65°C, respectively. Similar values of kOH for 3 , N‐methylbenzanilide, N‐methylbenzamide, and N,N‐dimethylbenzamide despite the difference between pKa values of aniline and ammonia of ~10 pK units are qualitatively explained. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 1–11, 2009  相似文献   

7.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

8.
Poly(1‐alkyne)s containing azobenzene pendant groups with different lengths of the spacer and terminal alkyloxy group {? [HC?C(CH2)mOCO? C6H4? N?N? C6H4? OCpH2p+1]n? , where m = 1, 2, 3, or 9 and p = 4, 7, or 12} were synthesized in satisfactory yields with the [Rh(nbd)Cl]2–Et3N catalyst. All the polymers were soluble in common organic solvents such as CHCl3 and tetrahydrofuran. Their structures and properties were characterized and evaluated with IR, NMR, thermogravimetric analysis, UV, and optical‐limiting and nonlinear optical analyses. All the polymers were thermally stable and decomposed at temperatures as high as ~300 °C. The optical‐limiting and nonlinear optical properties of the polymers were sensitive to their molecular structures. Polymers having shorter spacer lengths and longer terminal groups showed better performances and larger third‐order nonlinear optical susceptibility (up to 1.34 × 10?10 esu). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2346–2357, 2006  相似文献   

9.
Kinetics of the substitution reaction of solvent molecule in uranyl(VI) Schiff base complexes by tri‐n‐butylposphine as the entering nucleophile in acetonitrile at 10–40°C was studied spectrophotometrically. The second‐order rate constants for the substitution reaction of the solvent molecule were found to be (8.8 ± 0.5) × 10?3, (5.3 ± 0.2) × 10?3, (7.5 ± 0.3) × 10?3, (6.1 ± 0.3) × 10?3, (13.5 ± 1.6) × 10?3, (13.2 ± 0.9) × 10?3, (52.9 ± 0.2) × 10?3, and (88.1 ± 0.6) × 10?3 M?1 s?1 at 40°C for [UO2(Schiff base)(CH3CN)], where Schiff base = L1–L8, respectively. In a temperature dependence study, the activation parameters ΔH# and ΔS# for the reaction of uranyl complexes with PBu3 were determined. From the linear rate dependence on the concentration of PBu3, the span of k2 values and the large negative values of the activation entropy, an associative (A) mechanism is deduced for the solvent substitution. By comparing the second‐order rate constants k2, it was concluded that the steric and the electronic properties of the complexes were important for the rate of the reactions.  相似文献   

10.
Above‐room‐temperature polar magnets are of interest due to their practical applications in spintronics. Here we present a strategy to design high‐temperature polar magnetic oxides in the corundum‐derived A2BB′O6 family, exemplified by the non‐centrosymmetric (R3) Ni3TeO6‐type Mn2+2Fe3+Mo5+O6, which shows strong ferrimagnetic ordering with TC=337 K and demonstrates structural polarization without any ions with (n?1)d10ns0, d0, or stereoactive lone‐pair electrons. Density functional theory calculations confirm the experimental results and suggest that the energy of the magnetically ordered structure, based on the Ni3TeO6 prototype, is significantly lower than that of any related structure, and accounts for the spontaneous polarization (68 μC cm?2) and non‐centrosymmetry confirmed directly by second harmonic generation. These results motivate new directions in the search for practical magnetoelectric/multiferroic materials.  相似文献   

11.
Pseudo‐first‐order rate constants (kobs) for tertiary amine (DABCO and Me3N) buffer‐catalyzed cyclization of N′‐morpholino‐N‐(2′‐methoxyphenyl)phthalamide ( 1 ) to N‐(2′‐methoxyphenyl)phthalimide ( 2 ) reveal saturation (nonlinear) plots of kobs versus [Buf]T (total tertiary amine buffer concentration) at a constant pH. Such plots at different pH have been attributed to the presence of a reactive intermediate (T?) formed by tertiary amine buffer‐catalyzed intramolecular nucleophilic addition of the secondary amide nitrogen to the carbonyl carbon of the tertiary amide group of 1 . © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 263–272, 2010  相似文献   

12.
The kinetics of oxidation of [CrIIIcdta(H2O)]? and [CrIIIdtpa(H2O)]2? (where cdta = trans‐1,2‐diaminocyclohexane‐N,N,N′,N′‐tetraacetate and dtpa = diethylenetriaminepentaacetate) by periodate ion has been studied in aqueous solutions. The oxidation of these complexes was carried out in the pH range 5.52–7.44 for the [CrIIIcdta(H2O)]? complex and the pH range 5.56–8.56 for the [CrIIIdtpa(H2O)]2? complex. The reaction exhibited an uncommon second‐order dependence on [CrIIIL(H2O)]n (L = cdta or dtpa and n=?1 or ?2, respectively) and a first‐order dependence on [IO?4]. At fixed reaction conditions, the reaction rate is described by Eq. (i). The third‐order rate constant, k3, varied with [H+] according to Eq. (ii). (i) (ii) A mechanism in which simultaneous one‐electron transfer from two [CrIIIL(OH)]n?1 ions to I(VII) is proposed. The two [CrIIIL(OH)]n?1 ions are bridged to I(VII) via the hydroxo group. Periodate ion is known to undergo rapid substitution or expansion of its coordination number from four to six. The activation parameters ΔH* and ΔS* were calculated using the Eyring equation. The relatively high negative values of ΔS* are consistent with an associative process preceding electron transfer. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 729–735, 2012  相似文献   

13.
《Chemphyschem》2003,4(5):474-481
Spectroscopic, computational, redox, and photochemical behavior of a self‐assembled donor‐acceptor dyad formed by axial coordination of zinc naphthalocyanine, ZnNc, and fulleropyrrolidine bearing an imidazole coordinating ligand (2‐(4′‐imidazolylphenyl)fulleropyrrolidine, C60Im) was investigated in noncoordinating solvents, toluene and o‐dichlorobenzene, and the results were compared to the intermolecular electron transfer processes in a coordinating solvent, benzonitrile. The optical absorption and ab initio B3 LYP/3–21G(*) computational studies revealed self‐assembled supramolecular 1:1 dyad formation between the ZnNc and C60Im entities. In the optimized structure, the HOMO was found to be entirely located on the ZnNc entity while the LUMO was found to be entirely on the fullerene entity. Cyclic voltammetry studies of the dyad exhibited a total of seven one‐electron redox processes in o‐dichlorobenzene, with 0.1 M tetrabutylammonium perchlorate. The excited‐state electron‐transfer processes were monitored by both optical‐emission and transient‐absorption techniques. Direct evidence for the radical‐ion‐pair (C60Im.?:ZnNc . + ) formation was obtained from picosecond transient‐absorption spectral studies, which indicated charge separation from the singlet‐excited ZnNc to the C60Im moiety. The calculated rates of charge separation and charge recombination were 1.4×1010 s?1 and 5.3×107 s?1 in toluene and 8.9×109 s?1 and 9.2×107 s?1 in o‐dichlorobenzene, respectively. In benzonitrile, intermolecular electron transfer from the excited triplet state of ZnNc to C60Im occurs and the second‐order rate constant (kqtriplet) for this quenching process was 5.3×108 M ?1 s?1.  相似文献   

14.
Nitrogen‐rich heterocyclic bases and oxygen‐rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4‐amino‐1,2,4‐trizole (A), 1‐amino‐1,2,4‐trizole (B), and 5‐aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2)2 (II), HClO4 (III), and HC(NO2)3 (IV), are studied using DFT calculations at the B97‐D/6‐311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative ΔrGm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3?>N(NO2)2?>ClO4?>C(NO2)3?, and C+>B+>A+. In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen‐bond energy (EH,tot) leads to a higher melting point. The order of cations and anions on charge transfer (q), second‐order perturbation energy (E2), and binding energy (Eb) are the same to that of EH,tot, so larger q leads to larger E2, Eb, and EH,tot. All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5‐aminotetrazole and HClO4 are the preferred base and acid, respectively.  相似文献   

15.
New soluble MoS2 nanosheets covalently functionalized with poly(N‐vinylcarbazole) (MoS2–PVK) were in situ synthesized for the first time. In contrast to MoS2 and MoS2/PVK blends, both the solution of MoS2–PVK in DMF and MoS2–PVK/poly(methyl methacrylate) (PMMA) film show superior nonlinear optical and optical limiting responses. The MoS2–PVK/PMMA film shows the largest nonlinear coefficients (βeff) of about 917 cm GW?1 at λ=532 nm (cf. 100.69 cm GW?1 for MoS2/PMMA and 125.12 cm GW?1 for MoS2/PVK/PMMA) and about 461 cm GW?1 at λ=1064 nm (cf. ?48.92 cm GW?1 for MoS2/PMMA and 147.56 cm GW?1 for MoS2/PVK/PMMA). A larger optical limiting effect, with thresholds of about 0.3 GW cm?2 at λ=532 nm and about 0.5 GW cm?2 at λ=1064 nm, was also achieved from the MoS2–PVK/PMMA film. These values are among the highest reported for MoS2‐based nonlinear optical materials. These results show that covalent functionalization of MoS2 with polymers is an effective way to improve nonlinear optical responses for efficient optical limiting devices.  相似文献   

16.
Kinetic studies for the azo‐coupling reactions of 3‐ethoxythiophene 1 with a series of 4‐X‐substituted diazonium cations 2a‐e (X = OCH3, CH3, H, Cl, and NO2) have been investigated in acetonitrile at 20°C. The second‐order rate constants have been employed to determine the nucleophilicity parameters N and s of the thiophene 1 according the Mayr equation. Thus, the nucleophile‐specific parameters N and s of thiophene 1 have been derived and compared with the reactivities of other C‐nucleophiles in acetonitrile (pyrroles, furan, indoles, etc.). The Yukawa–Tsuno plot resulted in an excellent correlation (R2 = 0.9980) with an r value of 0.89, suggesting that the nonlinear Hammett plot observed in the present work is due to resonance demand of the π–electron donor substituent of on the –N2+ moiety. Importantly, using the concept of global electrophilicity (ω) proposed by Parr, we successfully predict the electrophilicity parameters E of seven substituted diazonium cations whose experimental data are available.  相似文献   

17.
The kinetics of oxidation of cis‐[CrIII(phen)2(H2O)2]3+ (phen = 1,10‐phenanthro‐ line) by IO4? has been studied in aqueous acidic solutions. In the presence of a vast excess of [IO4?], the reaction is first order in the chromium(III) complex concentration. The pseudo‐first‐order rate constant, kobs, showed a very small change with increasing [IO4?]. The dependence of kobs on [IO4?] is consistent with Eq. (i). (i) The pseudo‐first‐order rate constant, kobs, increased with increasing pH, indicating that the hydroxo form of the chromium(III) complex is the reactive species. An inner‐sphere mechanism has been proposed for the oxidation process. The thermodynamic activation parameters of the processes involved are also reported. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 563–568, 2011  相似文献   

18.
19.
The structures and second‐order nonlinear optical (NLO) properties of a series of chlorobenzyl‐o‐carboranes derivatives ( 1 – 12 ) containing different push‐pull groups have been studied by density functional theory (DFT) calculation. Our theoretical calculations show that the static first hyperpolarizability (βtot) values gradually increase with increasing the π‐conjugation length and the strength of electron donor group. Especially, compound 12 exhibits the largest βtot (62.404×10?30 esu) by introducing tetrathiafulvalene (TTF), which is about 76 times larger than that of compound 1 containing aryl. This means that the appropriate structural modification can substantially increase the first hyperpolarizabilities of the studied compounds. For the sake of understanding the origin of these large NLO responses, the frontier molecular orbitals (FMOs), electron density difference maps (EDDMs), orbital energy and electronic transition energy of the studied compounds are analyzed. According to the two‐state model, the lower transition energy plays an important role in increasing the first hyperpolarizability values. This study may evoke possible ways to design preferable NLO materials.  相似文献   

20.
The kinetics and mechanism of Hg2+‐catalyzed substitution of cyanide ion in an octahedral hexacyanoruthenate(II) complex by nitroso‐R‐salt have been studied spectrophotometrically at 525 nm (λmax of the purple‐red–colored complex). The reaction conditions were: temperature = 45.0 ± 0.1°C, pH = 7.00 ± 0.02, and ionic strength (I) = 0.1 M (KCl). The reaction exhibited a first‐order dependence on [nitroso‐R‐salt] and a variable order dependence on [Ru(CN)64?]. The initial rates were obtained from slopes of absorbance versus time plots. The rate of reaction was found to initially increase linearly with [nitroso‐R‐salt], and finally decrease at [nitroso‐R‐salt] = 3.50 × 10?4 M. The effects of variation of pH, ionic strength, concentration of catalyst, and temperature on the reaction rate were also studied and explained in detail. The values of k2 and activation parameters for catalyzed reaction were found to be 7.68 × 10?4 s?1 and Ea = 49.56 ± 0.091 kJ mol?1, ΔH = 46.91 ± 0.036 kJ mol?1, ΔS = ?234.13 ± 1.12 J K?1 mol?1, respectively. These activation parameters along with other experimental observations supported the solvent assisted interchange dissociative (Id) mechanism for the reaction. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 215–226, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号