首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(3):361-365
In this work, graphitic C3N4 decorated with a CoP co‐catalyst (g‐C3N4/CoP) is reported for photocatalytic H2 evolution reaction based on two‐step hydrothermal and phosphidation method. The structure of g‐C3N4/CoP is well confirmed by XRD, FTIR, TEM, XPS, and UV/Vis diffuse reflection spectra techniques. When the weight percentage of CoP loading is 3.4 wt % (g‐C3N4/CoP‐3.4 %), the highest H2 evolution amount of 8.4×102 μmol g−1 is obtained, which is 1.1×103 times than that over pure g‐C3N4. This value also is comparable with that of g‐C3N4 loaded by the same amount of Pt. In cycling experiments, g‐C3N4/CoP‐3.4 % shows a stable photocatalytic activity. In addition, g‐C3N4/CoP‐3.4 % is an efficient photocatalyst for H2 evolution under irradiation with natural solar light. Based on comparative photoluminescence emission spectra, photoelectrochemical I –t curves, EIS Nyquist plots, and polarization curves between g‐C3N4/CoP‐3.4 % and pure g‐C3N4, it is concluded that the presence of the CoP co‐catalyst accelerates the separation and transfer of photogenerated electrons of g‐C3N4, thus resulting in improved photocatalytic activity in the H2 evolution reaction.  相似文献   

2.
Water adsorption capacity is a key factor to influence the photocatalytic H2 evolution activity of polymeric g‐C3N4 . Herein, we report the synthesis of 3D ordered close‐packed g‐C3N4 nanosphere arrays (CNAs) that significantly enhance the water adsorption capacity. Through precisely controlling the average stacking‐layer number (ASLN) of the nanospheres in CNAs, we reveal an interesting stacking‐layer‐number dependence of water adsorption in the newly designed CNAs for accelerating the H2 evolution reaction, which can be attributed to the differences in adsorption surface areas and adsorption sites endowed by the point‐defect cavities in sample CNAs.  相似文献   

3.
《化学:亚洲杂志》2017,12(5):515-523
Carbonyl‐grafted g‐C3N4 porous nanosheets (COCNPNS) were fabricated by means of a two‐step thermal process using melamine and oxalic acid as starting reagents. The combination of melamine with oxalic acid to form a melamine–oxalic acid supramolecule as a precursor is key to synthesizing carbonyl‐grafted g‐C3N4. The bulk carbonyl‐grafted g‐C3N4 (COCN) was further thermally etched onto porous nanosheets by O2 under air. In such a process, the carbonyl groups were partly removed and the obtained sample showed remarkably enhanced visible‐light harvesting and promoted the separation and transfer of photogenerated electrons and holes. With its unique porous structure and enhanced light‐harvesting capability, under visible‐light illumination (λ >420 nm) the prepared COCNPNS exhibited a superior photocatalytic hydrogen evolution rate of 83.6 μmol h−1, which is 26 times that of the p‐CN obtained directly from thermal polycondensation of melamine.  相似文献   

4.
Photocatalytic water splitting to obtain hydrogen energy can transform low-density solar to high density, new and clean energy in a clean way, which is one of the ideal ways to solve the energy crisis and environmental pollution. In this paper, The CoxP/hollow porous C3N4 composite photocatalytic material was synthesized by simple methods. The photocatalytic hydrogen production rate of CoxP/hollow porous C3N4 reaches 1602 μmol g−1 h−1, which is 151 times of that of pure C3N4. The reasons for the high photocatalytic H2 evolution activity of CoxP/hollow porous C3N4 could be summarized as follows: (1) the hollow and porous structure of C3N4 shows higher light capture efficiency, larger specific surface area and more surface active sites. (2) metalloid CoxP loaded forms the Schottky contact with C3N4, which improves the photogenerated charges separation efficiency of C3N4, prolongs the photogenerated charges lifetime and improves the photocatalytic H2 evolution activity of C3N4. (3) The higher conductivity of metalloid CoxP and the lower overpotential of hydrogen production are other reasons for the higher activity of photocatalytic hydrogen production of CoxP/hollow porous C3N4. This work provides an important role for the design of efficient, stable, and efficient construction of photocatalysts for solar energy conversion.  相似文献   

5.
An unusual cobaloxime‐substituted terminal alkene, [Co(C6H11)(C4H7N2O2)2(C5H5N)], has been isolated and characterized by X‐ray crystallography. The double bond in the alkene readily isomerizes, but the title compound could be isolated and structurally characterized at low temperature.  相似文献   

6.
The synthesis of a novel series of the intermediates N2(N3)‐[1‐alkyl(aryl/heteroaryl)‐3‐oxo‐4,4,4‐trifluoroalk‐1‐en‐1‐yl]‐2‐aminopyridines [F3CC(O)CH?CR1(2? NH?C5H3N)] and 2,3‐diaminopyridines [F3CC(O)CH?CR1(2‐NH2‐3‐NH? C5H3N)], where R1 = H, Me, C6H5, 4‐FC6H4, 4‐CIC6H4, 4‐BrC6H4, 4‐CH3C6H4, 4‐OCH3C6H4, 4,4′‐biphenyl, 1‐naphthyl, 2‐thienyl, 2‐furyl, is reported. The corresponding series of 2‐aryl(heteroaryl)‐4‐trifluoromethyl‐3H‐pyrido[2,3‐b][1,4]diazepin‐4‐ols obtained from intramolecular cyclization reaction of the respective trifluoroacetyl enamines or from the direct cyclocondensation reaction of 4‐methoxy‐1,1,1‐trifluoroalk‐3‐en‐2‐ones with 2,3‐diaminopyridine, under mild conditions, is also reported.  相似文献   

7.
Graphitic carbon nitride (g‐C3N4)‐based photocatalysts have received considerable attention in the field of photocatalysis, especially for photocatalytic H2 evolution. However, the intrinsic disadvantages of g‐C3N4 seriously limit its practical application. Herein, CdS nanospheres with an average diameter of 135 nm prepared using a solvothermal method were used as co‐catalysts to form CdS/g‐C3N4 composites (CSCN) to enhance the photocatalytic activity. Various techniques were employed to characterize the structure, composition and optical properties of the as‐prepared samples. It was found that the CdS nanospheres were relatively uniformly dispersed on the surface of g‐C3N4. Moreover, the photocatalytic H2 generation activity of the samples was evaluated using lactic acid as sacrificial reagent in water under visible light irradiation. When the amount of CdS nanospheres loaded in the hybridized composites was 5 wt%, the optimal H2 evolution rate reached 924 μmol g?1 h?1, which was approximately 1.4 times higher than that (680 μmol g?1 h?1) of Pt/g‐C3N4 (3 wt%). Based on the results of analysis, a possible mechanism for the photocatalytic activity of CSCN is proposed tentatively.  相似文献   

8.
Herein, a novel broken case‐like carbon‐doped g‐C3N4 photocatalyst was obtained via a facile one‐pot pyrolysis and cost‐effective method using glyoxal‐modified melamine as a precursor. The obtained carbon/g‐C3N4 photocatalyst showed remarkable enhanced photocatalytic activity in the degradation of gaseous benzene compared with that of pristine g‐C3N4 under visible light. The pseudo‐first‐order rate constant for gaseous benzene degradation on carbon/g‐C3N4 was 0.186 hr?1, 5.81 times as large as that of pristine g‐C3N4. Furthermore, a possible photocatalytic mechanism for the improved photocatalytic performance over carbon/g‐C3N4 nanocomposites was proposed.  相似文献   

9.
5‐Benzylamino‐3‐tert‐butyl‐1‐phenyl‐1H‐pyrazole, C20H23N3, (I), and its 5‐[4‐(trifluoromethyl)benzyl]‐, C21H22F3N3, (III), and 5‐(4‐bromobenzyl)‐, C20H22BrN3, (V), analogues, are isomorphous in the space group C2/c, but not strictly isostructural; molecules of (I) form hydrogen‐bonded chains, while those of (III) and (V) form hydrogen‐bonded sheets, albeit with slightly different architectures. Molecules of 3‐tert‐butyl‐5‐(4‐methylbenzylamino)‐1‐phenyl‐1H‐pyrazole, C21H25N3, (II), are linked into hydrogen‐bonded dimers by a combination of N—H...π(arene) and C—H...π(arene) hydrogen bonds, while those of 3‐tert‐butyl‐5‐(4‐chlorobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22ClN3, (IV), form hydrogen‐bonded chains of rings which are themselves linked into sheets by an aromatic π–π stacking interaction. Simple hydrogen‐bonded chains built from a single N—H...O hydrogen bond are formed in 3‐tert‐butyl‐5‐(4‐nitrobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22N4O2, (VI), while in 3‐tert‐butyl‐5‐(3,4,5‐trimethoxybenzylamino)‐1‐phenyl‐1H‐pyrazole, C23H29N3O3, (VII), which crystallizes with Z′ = 2 in the space group P, pairs of molecules are linked into two independent centrosymmetric dimers, one generated by a three‐centre N—H...(O)2 hydrogen bond and the other by a two‐centre N—H...O hydrogen bond.  相似文献   

10.
The cycloadducts of isoquinolinium N‐phenyl imide 2 with C=C bonds are derivatives of 2‐amino‐1,2‐dihydroisoquinoline. Their Nβ‐vinylphenylhydrazine system is amenable to an acid‐catalyzed [3,3]‐sigmatropic shift; the formation of pentacyclic aminals is exemplified by 6 → 8 . The dimethyl maleate adduct 11 , C21H20N2O4, is exceptional by being converted on treatment with acid to bright‐yellow crystals, C24H22N2O6 (additional C3H2O2). X‐Ray crystal‐structure analysis and NMR spectra reveal structure 13 , and mechanistic studies indicated an initial β‐elimination at the N−N bond of 11 to yield 18 ; this step is followed by a retro‐Mannich‐type cleavage that gives methyl isoquinoline‐1‐acetate ( 14 ) and methyl 2‐(phenylimino)acetate ( 15 ), according to the sequence C21H20N2O4 ( 11 )→ 18 →C12H11NO2 ( 14 )+C9H9NO2 ( 15 ). In the second act of the drama, electrophilic attack by 15 ‐H+ on the ene‐hydrazine group of a second molecule of 11 furnishes 13 by a polystep intramolecular redox reaction. All rate constants must be fine‐tuned in this reaction cascade to give 13 in yields of up to 78% with an overall stoichiometry: 2 C21H20N2O4 ( 11 )→C24H22N2O6 ( 13 )+C12H11NO2 ( 14 )+aniline. Interception and model experiments confirmed the above pathway. A by‐product, C33H31N3O6 ( 62 ), arises from an acid‐catalyzed dimerization of 11 and subsequent elimination of 15 .  相似文献   

11.
Uniform‐sized silica nanospheres (SNSs) assembled into close‐packed structures were used as a primary template for ordered porous graphitic carbon nitride (g‐C3N4), which was subsequently used as a hard template to generate regularly arranged Ta3N5 nanoparticles of well‐controlled size. Inverse opal g‐C3N4 structures with the uniform pore size of 20–80 nm were synthesized by polymerization of cyanamide and subsequent dissolution of the SNSs with an aqueous HF solution. Back‐filling of the C3N4 pores with tantalum precursors, followed by nitridation in an NH3 flow gave regularly arranged, crystalline Ta3N5 nanoparticles that are connected with each other. The surface areas of the Ta3N5 samples were as high as 60 m2 g−1, and their particle size was tunable from 20 to 80 nm, which reflects the pore size of g‐C3N4. Polycrystalline hollow nanoparticles of Ta3N5 were also obtained by infiltration of a reduced amount of the tantalum source into the g‐C3N4 template. An improved photocatalytic activity for H2 evolution on the assembly of the Ta3N5 nanoparticles under visible‐light irradiation was attained as compared with that on a conventional Ta3N5 bulk material with low surface area.  相似文献   

12.
In order to examine the preferred hydrogen‐bonding pattern of various uracil derivatives, namely 5‐(hydroxymethyl)uracil, 5‐carboxyuracil and 5‐carboxy‐2‐thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5‐(hydroxymethyl)uracil, C5H6N2O3, (I), 5‐carboxyuracil–N,N‐dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5‐carboxyuracil–dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5‐carboxyuracil–N,N‐dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5‐carboxy‐2‐thiouracil–N,N‐dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5‐carboxy‐2‐thiouracil–dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5‐carboxy‐2‐thiouracil–1,4‐dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5‐carboxy‐2‐thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)–(VII), contain intramolecular S(6) O—H…O hydrogen‐bond motifs between the carboxy and carbonyl groups, the usually favoured R22(8) pattern between two carboxy groups is formed in the solvent‐free structure, i.e. (VIII). Further R22(8) hydrogen‐bond motifs involving either two N—H…O or two N—H…S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5‐position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six‐membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured.  相似文献   

13.
In each of ethyl N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinate, C16H19N5O3, (I), N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinamide, C14H16N6O2, (II), and ethyl 3‐amino‐N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}propionate, C17H21N5O3, (III), the pyrimidine ring is effectively planar, but in each of methyl N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}glycinate, C16H19N5O3, (IV), ethyl 3‐amino‐N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}propionate, C18H23N5O3, (V), and ethyl 3‐amino‐N‐[2‐amino‐5‐formyl‐6‐(piperidin‐4‐yl)pyrimidin‐4‐yl]propionate, C15H23N5O3, (VI), the pyrimidine ring is folded into a boat conformation. The bond lengths in each of (I)–(VI) provide evidence for significant polarization of the electronic structure. The molecules of (I) are linked by paired N—H...N hydrogen bonds to form isolated dimeric aggregates, and those of (III) are linked by a combination of N—H...N and N—H...O hydrogen bonds into a chain of edge‐fused rings. In the structure of (IV), molecules are linked into sheets by means of two hydrogen bonds, both of N—H...O type, in the structure of (V) by three hydrogen bonds, two of N—H...N type and one of C—H...O type, and in the structure of (VI) by four hydrogen bonds, all of N—H...O type. Molecules of (II) are linked into a three‐dimensional framework structure by a combination of three N—H...O hydrogen bonds and one C—H...O hydrogen bond.  相似文献   

14.
A novel two‐dimensional CoII coordination framework, namely poly[(μ2‐biphenyl‐4,4′‐diyldicarboxylato‐κ2O4:O4′){μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}cobalt(II)], [Co(C14H8O4)(C20H18N4O)]n, has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The crystal structure reveals that the compound has an achiral two‐dimensional layered structure based on opposite‐handed helical chains. In addition, it exhibits significant photocatalytic degradation activity for the degradation of methylene blue.  相似文献   

15.
以单分散SiO2为模板,通过简单的一步煅烧法制备具有分级孔结构的g-C3N4。与体相g-C3N4相比,分级孔结构的g-C3N4不仅可见光吸收性能和比表面积得到提高,而且更有利于光生电子-空穴的分离。此外,具有分级孔结构的g-C3N4具有明显增强的可见光驱动的光催化产氢活性,当SiO2和二氰二胺质量比为1∶1时,制备所得g-C3N4(C3N4-2)产氢速率几乎是体相g-C3N4的18倍。  相似文献   

16.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

17.
A further example of using a covalent‐bond‐forming reaction to alter supramolecular assembly by modification of hydrogen‐bonding possibilities is presented. This concept was introduced by Lemmerer, Bernstein & Kahlenberg [CrystEngComm (2011), 13 , 55–59]. The title structure, C9H11N3O·C7H6O4, which consists of a reacted niazid molecule, viz.N′‐(propan‐2‐ylidene)nicotinohydrazide, and 2,4‐dihydroxybenzoic acid, was solved from powder diffraction data using simulated annealing. The results further demonstrate the relevance and utility of powder diffraction as an analytical tool in the study of cocrystals and their hydrogen‐bond interactions.  相似文献   

18.
The title macrocycle, C26H30N2O6, (VI), was obtained by `direct amide cyclization' from the linear precursor 3‐hydr­oxy‐N‐[1‐methyl‐1‐(N‐methyl‐N‐phenyl­carbamoyl)ethyl]‐2‐phenylpropanamide, the N‐methyl­anilide of rac‐2‐methyl‐2‐[(3‐hydroxy‐2‐phenyl­propanoyl)­amino]­propanoic acid, C13H17NO4, (IV). The reaction proceeds via the inter­mediate rac‐2‐(2‐hydroxy‐1‐phenyl­ethyl)‐4,4‐dimethyl‐1,3‐oxazol‐5(4H)‐one, C13H15NO3, (V), which was synthesized independently and whose structure was also established. Unlike all previously described analogues, the title macrocycle has the cis‐diphenyl configuration. The 14‐membered ring has a distorted rect­angular diamond‐based [3434] configuration and inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into a three‐dimensional framework. The propanoic acid precursor forms a complex series of inter­molecular hydrogen bonds, each of which involves pairwise association of mol­ecules and which together result in the formation of extended two‐dimensional sheets. The oxazole inter­mediate forms centrosymmetric hydrogen‐bonded dimers in the solid state.  相似文献   

19.
A novel three‐dimensional (3D) ZnII coordination polymer, namely, poly[[[1,4‐bis(pyridin‐4‐yl)benzene](μ3‐3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoato)zinc(II)] 1,4‐bis(pyridin‐4‐yl)benzene], {[Zn(C22H16O6)(C16H12N2)]·C16H12N2}n or {[Zn(PMBD)(DPB)]·DPB}n, 1 , where H2PMBD is 3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoic acid and DPB is 1,4‐bis(pyridin‐4‐yl)benzene, has been synthesized by self‐assembly using zinc nitrate, a semi‐rigid dicarboxylic acid and a nitrogen‐containing ligand. The single‐crystal X‐ray structure determination indicates that 1 possesses an intriguing 3D architecture with a 4‐connected uninodal cds topology, which is constructed from dinuclear {Zn2} clusters and V‐shaped PMBD2? linkers. Compound 1 exhibits excellent photocatalytic activity on the degradation of the organic dyes Rhodamine B (RhB), Rhodamine 6G (Rh6G) and Methyl Red (MR).  相似文献   

20.
Knowledge of the photocatalytic H2 evolution mechanism is of great importance for designing active catalysts toward a sustainable energy supply. An atomic‐level insight, design, and fabrication of single‐site Co1‐N4 composite as a prototypical photocatalyst for efficient H2 production is reported. Correlated atomic characterizations verify that atomically dispersed Co atoms are successfully grafted by covalently forming a Co1‐N4 structure on g‐C3N4 nanosheets by atomic layer deposition. Different from the conventional homolytic or heterolytic pathway, theoretical investigations reveal that the coordinated donor nitrogen increases the electron density and lowers the formation barrier of key Co hydride intermediate, thereby accelerating H–H coupling to facilitate H2 generation. As a result, the composite photocatalyst exhibits a robust H2 production activity up to 10.8 μmol h−1, 11 times higher than that of pristine counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号