首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel amphiphilic hyperbranched‐upon‐dendritic polymers with a dendritic polyester core, a linear poly(ε‐caprolactone) (PCL) inner shell, and a hyperbranched polyglycerol outer shell have been prepared. The structures of the hyperbranched‐upon‐dendritic polymers were characterized by using NMR spectra. The critical aggregating concentrations (CACs) of those amphiphilic hyperbranched‐upon‐dendritic polymers were measured by using pyrene as the polarity probe. To study the encapsulation performances of those hyperbranched‐upon‐dendritic polymers as unimolecular hosts, inter‐molecular encapsulation was carefully prevented by controlling the host concentrations below their CACs and by washing with good organic solvents. The study on encapsulation of two model guest molecules, pyrene and indomethacin, was performed. The amounts of encapsulated molecules were dependent mainly on the size of inner linear shells. About three pyrene molecules or five indomethacin molecules were encapsulated in hyperbranched‐upon‐dendritic polymers with average PCL repeating units of two but different hyperbranched polyglycerol outer shells, whereas about five pyrene molecules or about 12 indomethacin molecules were encapsulated in those with PCL repeating units of nine. The encapsulated molecules could be released in a controlled manner. Thus, the hyperbranched‐upon‐dendritic polymers could be used as unimolecular nanocarriers with controllable molecular encapsulation dosage for controlled release. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4013–4019, 2010  相似文献   

2.
Topology‐selective encapsulation of a guest is generally exclusively achieved by a well‐defined host. In this article, a macromolecular reverse micelle (PEI@PS), with a hyperbranched polyethylenimine (PEI) as core and polystyrenes (PSs) as shell, is prepared and shown with excellent encapsulation and separation abilities. It is found that the encapsulation and phase transfer is kinetically dependent on the size of the dyes, creating a time window for the separation of dyes. All the experimental results show that the thickness and density of shell plays the most important roles in guest selectivity. In addition, highly size‐selective release is also found. This macromolecular reverse micelle (PEI@PS) can find useful applications in the liquid–liquid or solid–liquid extraction separation, especially for the latter.© 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1273–1281  相似文献   

3.
Polymeric micelles showing charge selective and pH‐reversible encapsulation are reported. It is found that for a guest mixture of organic cationic–anionic dyes, a unimolecular micelle (PEI@PS) with a polystyrene (PS) as shell and a hyperbranched polyethylenimine (PEI) as core can exclusively entrap the anionic one; and a physical micelle consisting of brush‐like macromolecule (mPS‐PAA) with multi PS‐b‐polyacrylic acid (PAA) as grafts can exclusively entrap the cationic one. A covalent micelle (PEI‐COOH@PS) bearing a zwitterionic core, that is, PEI covalently derived with dense carboxylic acids, can undergo highly pH‐switchable charge selective and pH‐reversible encapsulation. Both PEI@PS and mPS‐PAA can be used for highly charge‐selective separation of ionic dyes but the pH‐reversibility of the encapsulation is relatively limited. In contrast, PEI‐COOH@PS is less effective to differentiate the anionic–cationic dyes but is well recyclable. A physical micelle obtained from the self‐assembly of PEI and mPS‐PAA shows similar property to PEI‐COOH@PS. The combination of these micelles in mixture separation can enhance the recyclability of the micelle and widen the spectrum of mixtures that can be well separated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Star-block copolymers PEI-g-(PLG-b-PEG), which consist of a hyperbranched polyethylenimine (PEI) core, a poly(l-glutamic acid) (PLG) inner shell, and a poly(ethylene glycol) (PEG) outer shell, were synthesised and evaluated as nanocarriers for cationic drugs. The synthesised star-block copolymers were characterised by 1H NMR, gel permeation chromatography (GPC), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Crystal violet (CV), as a model cationic dye, and doxorubicin hydrochloride (DOX), as a model anticancer drug, could be efficiently entrapped by the synthesised star-block copolymers at physiological pH as a result of electrostatic interactions between the cationic guest molecules and the negatively charged PLG segments in the PEI-g-(PLG-b-PEG) host. The drug–polymer complexes showed relatively high temporal stability at physiological pH and sustained release of the encapsulated drugs was observed. The entrapped model compounds demonstrated accelerated release as the pH was gradually decreased.  相似文献   

5.
A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8‐bis(4‐aminophenyl)anthracene (1,8‐BAPA) with organic solvents. X‐ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8‐BAPA and eight guest molecules including both non‐polar (benzene) and polar guests (N,N‐dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature‐dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.  相似文献   

6.
Aqueous solutions containing simple model aliphatic and alicyclic carboxylic acids (surrogates 1–4) were studied using negative ion electrospray mass spectrometry (ESI‐MS) in the presence and absence of α‐, β‐, and γ‐cyclodextrin. Molecular ions were detected corresponding to the parent carboxylic acids and complexed forms of the carboxylic acids; the latter corresponding to non‐covalent inclusion complexes formed between carboxylic acid and cyclodextrin compounds (e.g., β‐CD, α‐CD, and γ‐CD). The formation of 1:1 non‐covalent inclusion cyclodextrin‐carboxylic complexes and non‐inclusion forms of the cellobiose‐carboxylic acid compounds was also observed. Aqueous solutions of Syncrude‐derived mixtures of aliphatic and alicyclic carboxylic acids (i.e. naphthenic acids; NAs) were similarly studied using ESI‐MS, as outlined above. Molecular ions corresponding to the formation of CD‐NAs inclusion complexes were observed whereas 1:1 non‐inclusion forms of the cellobiose‐NAs complexes were not detected. The ESI‐MS results provide evidence for some measure of inclusion selectivity according to the 'size‐fit' of the host and guest molecules (according to carbon number) and the hydrogen deficiency (z‐series) of the naphthenic acid compounds. The relative abundances of the molecular ions of the CD‐carboxylate anion adducts provide strong support for differing complex stability in aqueous solution. In general, the 1:1 complex stability according to hydrogen deficiency (z‐series) of naphthenic acids may be attributed to the nature of the cavity size of the cyclodextrin host compounds and the relative lipophilicity of the guest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
It is still a challenge to achieve both excellent mechanical strength and biocompatibility in hydrogels. In this study, we exploited two interactions to form a novel biocompatible, slicing‐resistant, and self‐healing hydrogel. The first was molecular host–guest recognition between a host (isocyanatoethyl acrylate modified β‐cyclodextrin) and a guest (2‐(2‐(2‐(2‐(adamantyl‐1‐oxy)ethoxy)ethoxy)ethoxy)ethanol acrylate) to form “three‐arm” host–guest supramolecules (HGSMs), and the second was covalent bonding between HGSMs (achieved by UV‐initiated polymerization) to form strong cross‐links in the hydrogel. The host–guest interaction enabled the hydrogel to rapidly self‐heal. When it was cut, fresh surfaces were formed with dangling host and guest molecules (due to the breaking of host–guest recognition), which rapidly recognized each other again to heal the hydrogel by recombination of the cut surfaces. The smart hydrogels hold promise for use as biomaterials for soft‐tissue repair.  相似文献   

8.
The ability to pack guest molecules into charged dendronized polymers (denpols) and the possibility to release these guest molecules from subsequently densely aggregated denpols in a load–collapse–release cascade is described. Charged denpols, which constitute molecular objects with a persistent, well‐defined envelope and interior, are capable of incorporating large amounts of amphiphilic guest molecules. Simultaneously, multivalent ions can coordinate to the surfaces of charged denpols, leading to counterion‐induced aggregation of the already guest‐loaded host structures. Thus, although the local guest concentration in denpol‐based molecular transport might already be initially high due to the dense guest packing inside the dendritic denpol scaffolding, the “local” guest concentration can nonetheless be further increased by packing (through aggregation) of the host–guest complexes themselves. Subsequent release of guest compounds from densely aggregated dendronized polymers is then possible (e.g., through increasing the solution concentration of imidazolium‐based ions). Augmented with this release possibility, the concept of twofold packing of guests, firstly through hosting itself and secondly through aggregation of the hosts, gives rise to a load–collapse–release cascade that strikingly displays the high potential of dendronized macromolecules for future molecular transport applications.  相似文献   

9.
This paper describes the behavior of various generations of polyglycerol dendrimers that contain a perfluorinated shell. The aggregation in organic solvents is based on supramolecular fluorous–fluorous interactions, which can be described by means of 19F NMR spectroscopy. In order to study the interaction and aggregation phenomena of dendrimers with perfluorinated shell and perfluoro‐tagged guest molecules we investigated [G3.5]‐dendrimer with a perfluorinated shell in the presence of perfluoro‐tagged disperse red. Noteworthy, the interaction intensities varied in an unexpected manner depending on the equivalents of perfluoro‐tagged guest molecules added to the dendrimers in solution which then formed supramolecular complexes based on fluorous–fluorous interactions. We found that these complexes aggregated around residual air in the solvent to form stable micron‐sized bubbles. Their sizes correlated with the interaction intensities measured for certain dendrimer–guest molecule ratios. Degassing of the solutions led to a quasi phase separation between organic and fluorous phase, whereby the dendrimers formed the fluorous phases. Regassing the sample with air afforded bubbles of the initial size again.  相似文献   

10.
Hydrogel biomaterials are pervasive in biomedical use. Applications of these soft materials range from contact lenses to drug depots to scaffolds for transplanted cells. A subset of hydrogels is prepared from physical cross‐linking mediated by host–guest interactions. Host macrocycles, the most recognizable supramolecular motif, facilitate complex formation with an array of guests by inclusion in their portal. Commonly, an appended macrocycle forms a complex with appended guests on another polymer chain. The formation of poly(pseudo)rotaxanes is also demonstrated, wherein macrocycles are threaded by a polymer chain to give rise to physical cross‐linking by secondary non‐covalent interactions or polymer jamming. Host–guest supramolecular hydrogels lend themselves to a variety of applications resulting from their dynamic properties that arise from non‐covalent supramolecular interactions, as well as engineered responsiveness to external stimuli. These are thus an exciting new class of materials.  相似文献   

11.
Overabundance of hydrogen peroxide originating from environmental stress and/or genetic mutation can lead to pathological conditions. Thus, the highly sensitive detection of H2O2 is important. Herein, supramolecular fluorescent nanoparticles self‐assembled from fluorescein isothiocyanate modified β‐cyclodextrin (FITC‐β‐CD)/rhodamine B modified ferrocene (Fc‐RB) amphiphile were prepared through host–guest interaction between FITC‐β‐CD host and Fc‐RB guest for H2O2 detection in cancer cells. The self‐assembled nanoparticles based on a combination of multiple non‐covalent interactions in aqueous medium showed high sensitivity to H2O2 while maintaining stability under physiological condition. Owing to the fluorescence resonance energy transfer (FRET) effect, addition of H2O2 led to obvious fluorescence change of nanoparticles from red (RB) to green (FITC) in fluorescent experiments. In vitro study showed the fluorescent nanoparticles could be efficiently internalized by cancer cells and then disrupted by endogenous H2O2, accompanying with FRET from “on” to “off”. These supramolecular fluorescent nanoparticles constructed via multiple non‐covalent interactions are expected to have potential applications in diagnosis and imaging of diseases caused by oxidative stresses.  相似文献   

12.
By taking advantage of the fact that cucurbit[6]uril (CB[6]) forms exceptionally stable host–guest complexes with protonated amines, and that its homologue CB[8] can encapsulate a pair of electron‐rich and electron‐deficient guest molecules to form a stable 1:1:1 complex, we synthesized a novel dendritic [10]pseudorotaxane, or second‐generation rotaxane dendrimer (from a topological point of view), in which 13 molecular components are held together by noncovalent interactions. A triply branched molecule containing an electron‐deficient bipyridinium unit on each branch formed a branched [4]pseudorotaxane with 3 equivalents of CB[8]. Addition of 3 equivalents of 2,6‐dihydroxynaphthalene produced a first‐generation rotaxane dendrimer, which was characterized by NMR spectroscopy and CSI‐MS. The reaction of the branched [4]pseudorotaxane with 3 equivalents of a triply branched molecule that has an electron‐donor unit at one arm and CB[6]‐containing units at the other two gave the dendritic [10]pseudorotaxane, the structure of which was confirmed by NMR spectroscopy, UV/Vis titration experiments, and CSI‐MS.  相似文献   

13.
Rotaxane‐type hyperbranched polymers are synthesized for the first time from A2B type semi‐rotaxane monomers formed in situ via complexation of bis(m‐phenylene)‐32‐crown‐10 dimethanol ( 1 ) and two paraquat ωn‐alkylenecarboxylic acid derivatives with tris(p‐t‐butylphenyl)methylphenylalkylene stoppers ( 8 and 9) . Rotaxane and taco complexes exist in solutions of the hyperbranched polyesters in CD3CN/CDCl3 as confirmed by NMR spectroscopy, but the taco complexes, which derive from non‐rotaxanated paraquat units, disappear in DMSO‐d6. NMR spectroscopy indicates the portion of rotaxanes strongly interlocked by the environment (inner rotaxanes) is larger in HP1?9 , which has longer alkylene spacers, perhaps indicating a higher degree of polymerization. The molecular size increases upon formation of the hyperbranched polymers are confirmed by dynamic light scattering and by viscometry. As with covalent hyperbranched polymers a number of potential applications exist; the unique mechanically linked character and the presence of uncomplexed host and guest moieties foreshadow the use of such systems for their responses to external stimuli with the added benefit of providing molecular recognition sites useful as delivery vehicles. Use of other host‐guest motifs to form the semirotaxane A2B monomers is possible and complementary systems with higher binding constants will enable efficient syntheses of high molecular weight, mechanically linked hyperbranched polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1647–1658  相似文献   

14.
Recent advances in host–guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non‐covalent interactions provide vast possibilities of manipulating supramolecular self‐assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self‐assemblies through host–guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli‐responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co‐delivery and site‐specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host–guest chemistry with biological interface science are proposed.  相似文献   

15.
Ternary host–guest complexes have been first obtained from cucurbituril CB[8] as a host molecule and two guest molecules: nitroxyl probes of different structures and biologically important amino acids (AA) and aromatic compounds. To characterize the binding of the guests, parameters of the polarity of the environment and the rotational mobility of the spin probes have been used. These parameters have been shown to depend on the nature of the analytes. For the ternary complexes, in addition to the usual triplet ESR spectra from nitroxyl probes (S3), supramolecular ensembles consisting of three equivalent ternary complexes (“triads”) have been found, whose ESR spectra have a seven-component hyperfine structure (S7) due to delocalization of the unpaired electron over three nitrogen nuclei. The relative intensity of the S7 spectra increases with increasing NaCl concentration in the solution, and also depends significantly on the nature of the analyte and the spin probe. Quantum chemical calculations have shown that (1) to determine the stability of the complexes, it is necessary to allow for the van der Waals interaction, and (2) the complexes involving the zwitterionic form of AA are much more stable than those with the neutral form of AA.  相似文献   

16.
The development of an effective and general delivery method that can be applied to a large variety of structurally diverse biomolecules remains a bottleneck in modern drug therapy. Herein, we present a supramolecular system for the dynamic trapping and light‐stimulated release of both DNA and proteins. Self‐assembled ternary complexes act as nanoscale carriers, comprising vesicles of amphiphilic cyclodextrin, the target biomolecules and linker molecules with an azobenzene unit and a charged functionality. The non‐covalent linker binds to the cyclodextrin by host–guest complexation with the azobenzene. Proteins or DNA are then bound to the functionalized vesicles through multivalent electrostatic attraction. The photoresponse of the host–guest complex allows a light‐induced switch from the multivalent state that can bind the biomolecules to the low‐affinity state of the free linker, thereby providing external control over the cargo release. The major advantage of this delivery approach is the wide variety of targets that can be addressed by multivalent electrostatic interaction, which we demonstrate on four types of DNA and six different proteins.  相似文献   

17.
18.
《Tetrahedron: Asymmetry》2007,18(4):483-487
The protonated forms of the chiral molecules (S)- and (R)-N-benzyl-1-(1-naphthyl)ethylamine (BNEAH+) form very stable 1:1 guest–host complexes with cucurbit[7]uril in aqueous solution. The stoichiometry and stability constants for the guest–host complexes were determined by 1H NMR, UV–visible and circular dichroism spectroscopy and electrospray mass spectrometry. The molecular optical rotations of the guests increase in magnitude by about 5-fold upon formation of the {BNEAH·CB[7]}+ species. Energy minimized structures of the guests and guest–host complexes indicate changes in the dihedral angles about the stereogenic centre upon ion-dipole and H-bonding interactions between the ammonium hydrogens of the guest and the carbonyl groups of the cucurbituril portals. The increases in the optical rotations are discussed in terms of restricted rotations of the naphthyl groups and in preferential solvation of benzylamine in the cucurbit[7]uril cavity.  相似文献   

19.
The construction of supramolecular systems in aqueous media is still a great challenge owing to the limited sources of building blocks. In this study, a series of 4‐aryl‐N‐methylpyridinium derivatives have been synthesized. They formed very stable host–guest (1:2) complexes with CB[8] in water (binding constants up to 1014 M ?2) with the two guest molecules arranged in a head‐to‐tail manner and the complexes showed high thermostability, which was revealed by 1H NMR and UV/Vis spectroscopic studies, ITC, and crystallographic analysis.  相似文献   

20.
We report the synthesis and gradient stimuli‐responsive properties of cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures. A ionic hyperbranched poly(β‐cyclodextrin) (β‐CD) core was firstly synthesized via a convenient “A2+B3” approach. Double‐layered shell architectures, composed of poly(N‐isopropyl acrylamide) (PNIPAm) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) miktoarms as the outermost shell linked to poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) homoarms which form the inner shell, were obtained by a sequential atom transfer radical polymerization (ATRP) and parallel click chemistry from the modified hyperbranched poly(β‐CD) macroinitiator. The combined characterization by 1H NMR, 13C NMR, 1H‐29Si heteronuclear multiple‐bond correlation (HMBC), FTIR and size exclusion chromatography/multiangle laser light scattering (SEC/MALLS) confirms the remarkable hyperbranched poly(β‐CD) core and double‐shell miktoarm architectures. The gradient triple‐stimuli‐responsive properties of hyperbranched core‐double‐shell miktoarm architectures and the corresponding mechanisms were investigated by UV–vis spectrophotometer and dynamic light scattering (DLS). Results show that this polymer possesses three‐stage phase transition behaviors. The first‐stage phase transition comes from the deprotonation of PDEAEMA segments at pH 9–10 aqueous solution under room temperature. The confined coil‐globule conformation transition of PNIPAm and PDMAEMA arms gives rise to the second‐stage hysteretic cophase transition between 38 and 44 °C at pH 10. The third‐stage phase transition occurs above 44 °C at pH = 10 attributed to the confined secondary conformation transition of partial PDMAEMA segments. This cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures are expected to solve the problems of inadequate functionalities from core layer and lacking multiresponsiveness for shell layers existing in the dendritic core‐multishell architectures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号