首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugated molecules with low lying LUMO levels are demanding for the development of air stable n‐type organic semiconductors. In this paper, we report a new A‐D‐A′‐D‐A conjugated molecule ( DAPDCV ) entailing diazapentalene (DAP) and dicyanovinylene groups as electron accepting units. Both theoretical and electrochemical studies manifest that the incorporation of DAP unit in the conjugated molecule can effectively lower the LUMO energy level. Accordingly, thin film of DAPDCV shows n‐type semiconducting behavior with electron mobility up to 0.16 cm2?V?1?s?1 after thermal annealing under N2 atmosphere. Moreover, thin film of DAPDCV also shows stable n‐type transporting property in air with mobility reaching 0.078 cm2?V?1?s?1.  相似文献   

2.
A first step towards the microfabrication of a thin‐film array based on an organic/inorganic sensor hybrid has been realized. The inorganic microsensor part incorporates a sensor membrane based on a chalcogenide glass material (Cu‐Ag‐As‐Se) prepared by pulsed laser deposition technique (PLD) combined with an PVC organic membrane‐based organic microsensor part that includes an o‐xylyene bis(N,N‐diisobutyl‐dithiocarbamate) ionophore. Both types of materials have been electrochemically evaluated as sensing materials for copper(II) ions. The integrated hybrid sensor array based on these sensing materials provides a linear Nernstian response covering the range 1×10?6–1×10?1 mol L?1 of copper(II) ion concentration with a fast, reliable and reproducible response. The merit offered by the new type of thin‐film hybrid array includes the high selectivity feature of the organic membrane‐based thin‐film microsensor part in addition to the high stability of the inorganic thin‐film microsensor part. Moreover, the thin‐film sensor hybrid has been successfully applied in flow‐injection analysis (FIA) for the determination of copper(II) ions using a miniaturized home‐made flow‐through cell. Realization of the organic/inorganic thin‐film sensor hybrid array facilitates the development of a promising sophisticated electronic tongue for recognition and classification of various liquid media.  相似文献   

3.
Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB‐TTF) central core and a 2,1,3‐chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB‐TTF, have been synthesised as active materials for organic field‐effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron‐withdrawing 2,1,3‐chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution‐processed single‐crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V?1 s?1 as well as good ambient stability.  相似文献   

4.
A liquid‐crystalline (LC) phenylterthiophene derivative, which exhibited an ordered smectic phase at room temperature, was purified by vacuum sublimation under a flow of nitrogen. During the sublimation process, thin plates with sizes of 1 mm grew on the surface of the vacuum tube. The crystals exhibited the same X‐ray diffraction patterns as the ordered smectic phase of the LC state that was formed through a conventional recrystallization process by using organic solvents. Because of the removal of chemical impurities, the hole mobility in the ordered smectic phase of the vacuum‐grown thin plates increased to 1.2×10?1 cm2 V?1 s?1 at room temperature, whereas that of the LC precipitates was 7×10?2 cm2 V?1 s?1. The hole mobility in the ordered smectic phase of the vacuum‐sublimated sample was temperature‐independent between 400 and 220 K. The electric‐field dependence of the hole mobility was also very small within this temperature range. The temperature dependence of hole mobility was well‐described by the Hoesterey–Letson model. The hole‐transport characteristics indicate that band‐like conduction affected by the localized states, rather than a charge‐carrier‐hopping mechanism, is a valid mechanism for hole transport in an ordered smectic phase.  相似文献   

5.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

6.
A discotic liquid‐crystalline (LC) material, consisting of a planarized triphenylborane mesogen, was synthesized. X‐ray diffraction analysis confirmed that this compound forms a hexagonal columnar LC phase with an interfacial distance of 3.57 Å between the discs. At ambient temperature, this boron‐centered discotic liquid crystal exhibited ambipolar carrier transport properties with electron and hole mobility values of approximately 10?3 and 3×10?5 cm2 V?1 s?1, respectively.  相似文献   

7.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

8.
A series of new organic semiconductors based on s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione was successfully synthesized and characterized. The electron withdrawing carbonyl group lowers the LUMO energy levels, leading to increased electronegativities, which is beneficial for high photo‐stability in air. The n‐alkyl substituted compounds, 1c and 1d , crystallize with the rigid coplanar systems packed into slipped face‐to‐face π‐stacks. Interestingly, 1c and 1d also show liquid crystalline behaviors, which give highly ordered molecular packing over large area.  相似文献   

9.
A series of 1,3‐indandione‐terminated π‐conjugated quinoids were synthesized by alkoxide‐mediated rearrangement reaction of the respective alkene precursors, followed by air oxidation. This new protocol allows access to quinoidal compounds with variable termini and cores. The resulting quinoids all show LUMO levels below ?4.0 eV and molar extinction coefficients above 105 L mol?1 cm?1. The optoelectronic properties of these compounds can be regulated by tuning the central cores as well as the aryl termini ascribed to the delocalized frontier molecular orbitals over the entire molecular skeleton involving aryl termini. n‐Channel organic thin‐film transistors with electron mobility of up to 0.38 cm2 V?1 s?1 were fabricated, showing the potential of this new class of quinoids as organic semiconductors.  相似文献   

10.
By using aryl‐amination chemistry, a series of rodlike 1‐phenyl‐1H‐imidazole‐based liquid crystals (LCs) and related imidazolium‐based ionic liquid crystals (ILCs) has been prepared. The number and length of the C‐terminal chains (at the noncharged end of the rodlike core) and the length of the N‐terminal chain (on the imidazolium unit in the ILCs) were modified and the influence of these structural parameters on the mode of self‐assembly in LC phases was investigated by polarizing microscopy, differential scanning calorimetry, and X‐ray diffraction. For the single‐chain imidazole derivatives nematic phases (N) and bilayer SmA2 phases were found, but upon increasing the number of alkyl chains the LC phases were lost. For the related imidazolium salts LC phases were preserved upon increasing the number and length of the C‐terminal chains and in this series it leads to the phase sequence SmA–columnar (Col)–micellar cubic (CubI/Pm3n). Elongation of the N‐terminal chain gives the reversed sequence. Short N‐terminal chains prefer an end‐to‐end packing of the mesogens in which these chains are separated from the C‐terminal chains. Elongation of the N‐terminal chain leads to a mixing of N‐ and C‐terminal chains, which is accompanied by complete intercalation of the aromatic cores. In the smectic phases this gives rise to a transition from bilayer (SmA2) to monolayer smectic (SmA) phases. For the columnar and cubic phases the segregated end‐to‐end packing leads to core–shell aggregates. In this case, elongation of the N‐terminal chains distorts core–shell formation and removes CubI and Col phases in favor of single‐layer SmA phases. Hence, by tailoring the length of the N‐terminal chain, a crossover from taper‐shaped to polycatenar LC tectons was achieved, which provides a powerful tool for control of self‐assembly in ILCs.  相似文献   

11.
A naphthalenediimide (NDI)‐based conjugated polymer was synthesized by a two‐step direct C‐H arylation sequence. In the first step, two ethylenedioxythiophene units were coupled to NDI by direct arylation. In the second step, the direct arylation polycondensation of the monomer, formed in the first step, with 2,7‐dibromo‐9,9‐dioctylfluorene afforded the corresponding NDI‐based conjugated polymer ( PEDOTNDIF ) with molecular weight of 21,500 in 91% yield. The optical and electrochemical properties of the polymer were evaluated. The polymer showed ambipolar behavior in organic field‐effect transistors (OFETs). The electron mobility of PEDOTNDIF was estimated to be 2.3 × 10?6 cm2 V?1 s?1 using an OFET device with source‐drain (S‐D) Au electrodes. A modified OFET device with S‐D MgAg electrodes increased the electron mobility for PEDOTNDIF to 1.0 × 10?5 cm2 V?1 s?1 due to the more suitable work function of these electrodes, which reduced the injection barrier to the semiconducting polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1401–1407  相似文献   

12.
A series of unsymmetrical naphthalene imide derivatives ( 1a , 1b , 2 , 3 , 4 , 5 ) with high electron affinity was synthesized and used in n‐channel organic field‐effect transistors (OFETs). They have very good solubility in common organic solvents and good thermal stability up to 320 °C. Their photophysical, electrochemical, and thermal properties were investigated in detail. They showed low‐lying LUMO energy levels from ?3.90 to ?4.15 eV owing to a strong electron‐withdrawing character. Solution‐processed thin‐film OFETs based on 1a , 1b , 2 , 3 , 4 were measured in both N2 and air. They all showed n‐type FET behavior. The liquid‐crystalline compounds 1a , 1b , and 3 showed good performance owing to the self‐healing properties of the film in the liquid‐crystal phase. Compound 3 has an electron mobility of up to 0.016 cm2 V?1 s?1 and current on/off ratios of 104–105.  相似文献   

13.
A new ladder‐conjugated star‐shaped oligomer electron‐transporting material TetraPDI‐PF , with four perylene diimide (PDI) branches and a fluorene core, was efficiently synthesized. The oligomer is highly soluble in dichlorobenzene with a solubility of 155 mg mL?1, which is higher than those of PDI (35 mg mL?1) and PDI‐Phen (70 mg mL?1). Demonstrated by thermogravimetric analysis (TGA), the oligomer exhibits excellent thermal stability with the decomposition temperature (Td) of 291.2 °C, which is 65 °C higher than that of PDI. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed to investigate the electrochemical properties. Although the CV curves of TetraPDI‐PF are successively scanned for 15 cycles, they still remain invariable reduction potentials. The oligomer also shows outstanding photostability, even better than PDI, which maintains 99 % fluorescence intensity after irradiation for 10 min using maximum laser intensity. In the steady‐state space‐charge‐limited current (SCLC) devices, TetraPDI‐PF exhibits higher intrinsic electron mobility of 2.22×10?5 cm2 V?1 s?1, three orders of magnitude over that of PDI (3.52×10?8 cm2 V?1 s?1). The bulk heterojunction (BHJ) organic solar cells (OSCs) using TetraPDI‐PF as non‐fullerene acceptors and P3HT as donors give optimum power conversion efficiency (PCE) of 0.64 %, which is 64 times that of the PDI:P3HT BHJ cells.  相似文献   

14.
Dimensionality plays an important role in the charge transport properties of organic semiconductors. Although three‐dimensional semiconductors, such as Si, are common in inorganic materials, imparting electrical conductivity to covalent three‐dimensional organic polymers is challenging. Now, the synthesis of a three‐dimensional π‐conjugated porous organic polymer (3D p‐POP) using catalyst‐free Diels–Alder cycloaddition polymerization followed by acid‐promoted aromatization is presented. With a surface area of 801 m2 g?1, full conjugation throughout the carbon backbone, and an electrical conductivity of 6(2)×10?4 S cm?1 upon treatment with I2 vapor, the 3D p‐POP is the first member of a new class of permanently porous 3D organic semiconductors.  相似文献   

15.
Three new benzothieno[3,2‐b]thiophene ( BTT ; 1 ) derivatives, which were end‐functionalized with phenyl ( BTT‐P ; 2 ), benzothiophenyl ( BTT‐BT ; 3 ), and benzothieno[3,2‐b]thiophenyl groups ( BBTT ; 4 ; dimer of 1 ), were synthesized and characterized in organic thin‐film transistors (OTFTs). A new and improved synthetic method for BTT s was developed, which enabled the efficient realization of new BTT ‐based semiconductors. The crystal structure of BBTT was determined by single‐crystal X‐ray diffraction. Within this family, BBTT , which had the largest conjugation of the BTT derivatives in this study, exhibited the highest p‐channel characteristic, with a carrier mobility as high as 0.22 cm2 V?1 s?1 and a current on/off ratio of 1×107, as well as good ambient stability for bottom‐contact/bottom‐gate OTFT devices. The device characteristics were correlated with the film morphologies and microstructures of the corresponding compounds.  相似文献   

16.
The volume fraction plays an important role in phase segregated soft matters. We demonstrate here that at high fullerene volume fraction in soft chain‐tethered‐fullerene dyads, different two‐dimensional (2D) crystal‐constructed smectic‐like lamella liquid crystalline (LC) phases can be formed with triple‐layer (ST phase) or quadruple‐layer (SQ phase) stacking of fullerenes in 2D crystals. The combination of 2D crystal and LC properties in one system affords these fullerene dyads controlled electron mobility in the range of 10?5–10?3 cm2 V?1 s?1 at room temperature (ST phase), by regulating the insulated soft layer thickness between 2D crystals via the manipulation of fullerene volume fraction.  相似文献   

17.
Non‐chlorinated solvents are highly preferable for organic electronic processing due to their environmentally friendly characteristics. Four different halogen‐free solvents, tetrafuran, toluene, meta‐xylene and 1,2,4‐trimethylbenzene, were selected to fabricate n‐channel organic thin film transistors (OTFTs) based on 3‐hexylundecyl substituted naphthalene diimides fused with (1,3‐dithiol‐2‐ylidene)malononitrile groups (NDI3HU‐DTYM2). The OTFTs based on NDI3HU‐DTYM2 showed electron mobility of up to 1.37 cm2·V?1·s?1 under ambient condition. This is among the highest device performance for n‐channel OTFTs processed from halogen‐free solvents. The different thin‐film morphologies, from featureless low crystalline morphology to well‐aligned nanofibres, have a great effect on the device performance. These results might shed some light on solvent selection and the resulting solution process for organic electronic devices.  相似文献   

18.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

19.
An ionic liquid (IL) 1‐(3‐chloro‐2‐hydroxy‐propyl)‐3‐methylimidazolium trifluoroacetate was used as the modifier for the preparation of the modified carbon paste electrode (CPE). The IL‐CPE showed excellent electrocatalytic activity towards the oxidation of guanosine‐5′‐triphosphate (5′‐GTP) in a pH 5.0 Britton‐Robinson buffer solution. Due to the presence of high conductive IL on the electrode surface, the electrooxidation of 5′‐GTP was greatly promoted with a single well‐defined irreversible oxidation peak appeared. The electrode reaction was an adsorption‐controlled process and the electrochemical parameters of 5′‐GTP on IL‐CPE were calculated with the electron transfer coefficient (α) as 0.44, the electron transfer number (n) as 1.99, the apparent heterogeneous electron transfer rate constant (ks) as 2.21 × 10?9 s?1 and the surface coverage (ΓT) as 1.53 × 10?10 mol cm?2. Under the selected conditions a linear calibration curve between the oxidation peak currents and 5′‐GTP concentration was obtained in the range from 2.0 to 1000.0 μmol L?1 with the detection limit as 0.049 μmol L?1 (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the 5‘‐GTP detection without the interferences of coexisting substances and the practical application was checked by measurements of the artificial samples.  相似文献   

20.
Macroscopically oriented stable organic radicals have been obtained by using a liquid–crystalline (LC) gel composed of an l ‐isoleucine‐based low molecular weight gelator containing a 2,2,6,6‐tetramethylpiperidine 1‐oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super‐exchange interaction constant J is estimated as ?0.89 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号