首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1,2‐bis[(diarylphosphino)ethynyl]benzene derivatives 1a (R=Ph) and 1b (R=o‐tolyl) undergo 1,1‐carboboration at one of their acetylene units upon treatment with (C6F5)3B at elevated temperature to give the products 5a and 5b , respectively. At room temperature, we observed the formation of the corresponding phosphireniumborate zwitterions, 7a and 7b , respectively, which may be intermediates of the 1,1‐carboboration reactions. The reaction of the more bulky 1,2‐bis[(dimesitylphosphino)ethynyl]benzene 1c with (C6F5)3B takes a different course. At 110°, we observed the complete conversion to the benzopentafulvene derivative 8 which is probably formed in a typical carbocation rearrangement sequence after the initial (C6F5)3B Lewis acid‐addition step. The compounds 5a, 5b, 7b , and 8 were characterized by X‐ray crystal‐structure analyses.  相似文献   

2.
The reaction of 8‐(trimethylsiloxy)quinoline ( QOTMS ) with BCl3 and (aryl)BCl2 forms QOBCl2 and QOBCl(aryl). The subsequent addition of stoichiometric AlCl3 follows one of two paths, dependent on the steric demands of the QO ligand and the electrophilicity of the resulting borenium cation. The phenyl‐ and 5‐hexylthienylborenium cations, QOBPh+ and QOBTh+ , are formed, whereas QOBCl+ is not. Instead, AlCl3 preferentially binds with QOBCl2 at oxygen, forming QOBCl2?AlCl3 , rather than abstracting chloride. A modest increase in the steric demands around oxygen, by installing a methyl group at the 7‐position of the quinolato ligand, switches the reactivity with AlCl3 back to chloride abstraction, allowing formation of QOBCl+ . All the prepared borenium cations are highly chlorophilic and exhibit significant interaction with AlCl4? resulting in an equilibrium concentration of Lewis acidic “AlCl3” species. The presence of “AlCl3 species limits the alkyne substrates compatible with these borenium systems, with reaction of [ QOBPh][AlCl4] with 1‐pentyne exclusively yielding the cyclotrimerised product, 1,3,5‐tripropylbenzene. In contrast, QOBPh+ and QOBTh+ systems effect the syn‐1,2‐carboboration of 3‐hexyne. DFT calculations at the M06‐2X/6‐311G(d,p)/PCM(DCM) level confirm that the higher migratory aptitude of Ph versus Me leads to a lower barrier to 1,2‐carboboration relative to 1,1‐carboboration.  相似文献   

3.
Hydroboration of the conjugated enynes 1 a and 1 b with Piers’ borane [HB(C6F5)2] gave the respective dienylboranes trans‐ 2 c and trans‐ 2 d . Their photolysis resulted in the formation of the dihydroborole products 3 c and 3 d . Both were converted to their pyridine adducts 5 c and 5 d , respectively. Compounds 3 c and 5 c,d were characterized by X‐ray diffraction. The reaction of the bis(enynyl)boranes 6 a and 6 b with B(C6F5)3 resulted in the formation of the dihydroboroles 7 a and 7 b , respectively. This reaction is thought to proceed by 1,1‐carboboration of one of the enynyl substituents at boron to generate the dienylborane intermediates 8 a / 8 b , followed by thermally induced bora‐Nazarov ring‐closure and subsequent stabilizing 1,2‐pentafluorophenyl group migration from boron to carbon. Compound 7 a was characterized by X‐ray diffraction and solid‐state 11B NMR spectroscopy.  相似文献   

4.
The bis(alkynyl)diisopropyl‐aminoboranes 7 were prepared by treatment of iPr2NBCl2 with two molar equivalents of 1‐pentynyl lithium or lithium phenylacetylenide, respectively. Their reaction with one molar equivalent of B(C6F5)3 resulted in the formation of the 1,1‐carboboration products 8 that were subsequently stabilized by adduct formation ( 9 ) with tert‐butyl isocyanide. Thermolysis of 8a (R=nPr) proceeded with hydride transfer from a N‐isopropyl substituent to the distal carbon atom of the remaining pentynyl unit at boron to give the zwitterionic five‐membered heterocyclic product 10a in good yield. The analogous product 10b (R=Ph) was obtained upon photolysis of 8b . The compounds 7b , 9b , 10a , and 10b were characterized by X‐ray crystal structure analysis.  相似文献   

5.
The first comprehensive study of the synthesis and structure–property relationships of 2,2′‐bis(benzo[b]phosphole)s and 2,2′‐benzo[b]phosphole–benzo[b]heterole hybrid π systems is reported. 2‐Bromobenzo[b]phosphole P‐oxide underwent copper‐assisted homocoupling (Ullmann coupling) and palladium‐catalyzed cross‐coupling (Stille coupling) to give new classes of benzo[b]phosphole derivatives. The benzo[b]phosphole–benzo[b]thiophene and ‐indole derivatives were further converted to P,X‐bridged terphenylenes (X=S, N) by a palladium‐catalyzed oxidative cycloaddition reaction with 4‐octyne through the Cβ? H activation. X‐ray analyses of three compounds showed that the benzo[b]phosphole‐benzo[b]heterole derivatives have coplanar π planes as a result of the effective conjugation through inter‐ring C? C bonds. The π–π* transition energies and redox potentials of the cis and trans isomers of bis(benzo[b]phosphole) P‐oxide are very close to each other, suggesting that their optical and electrochemical properties are little affected by the relative stereochemistry at the two phosphorus atoms. The optical properties of the benzo[b]phosphole–benzo[b]heterole hybrids are highly dependent on the benzo[b]heterole subunits. Steady‐state UV/Vis absorption/fluorescence spectroscopy, fluorescence lifetime measurements, and theoretical calculations of the non‐fused and acetylene‐fused benzo[b]phosphole–benzo[b]heterole π systems revealed that their emissive excited states consist of two different conformers in rapid equilibrium.  相似文献   

6.
The reaction of a Lewis acidic borane with an alkyne is a key step in a diverse range of main group transformations. Alkyne 1,1‐carboboration, the Wrackmeyer reaction, is an archetypal transformation of this kind. 1,1‐Carboboration has been proposed to proceed through a zwitterionic intermediate. We report the isolation and spectroscopic, structural and computational characterization of the zwitterionic intermediates generated by reaction of B(C6F5)3 with alkynes. The stepwise reactivity of the zwitterion provides new mechanistic insight for 1,1‐carboboration and wider B(C6F5)3 catalysis. Making use of intramolecular stabilization by a ferrocene substituent, we have characterized the zwitterionic intermediate in the solid state and diverted reactivity towards alkyne cyclotrimerization.  相似文献   

7.
The synthesis and unique optoelectronic features of a π‐conjugated polymer containing both thiophene and 1‐phenylphosphole sulfide units (multiple heteroles) in the main chain by the post‐element transformation of a regioregular organometallic polymer possessing titanacyclopentadiene‐2,5‐diyl unit are described. The π‐conjugated polymer containing multiple heteroles was obtained in 73% yield by the simultaneous reaction of the organotitanium polymer with sulfur monochloride and dichlorophenylphosphine (0.6 equiv each), whose number‐average molecular weight (Mn) and the molecular‐weight distribution (Mw/Mn) were estimated to be 11,000 and 3.4, respectively, by the size exclusion chromatography (SEC). The π‐conjugated polymer thus obtained was found to have the high HOMO and the low LUMO energy levels due to the electron‐rich thiophene and electron‐deficient phosphole sulfide units, respectively, as supported by its cyclic voltammetry (CV) analysis. Compared to a mixture of a polymer containing sole thiophene‐unit and that containing sole phosphole sulfide units, the π‐conjugated polymer‐containing multiple heteroles proved to exhibit interesting optical properties. For example, a specific emission peak was observed at 608 nm in the photoluminescence spectrum, which was not observed in the case of the thiophene‐containing polymer, the phosphole‐containing polymer, and their mixture. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2519–2525  相似文献   

8.
A series of 1‐alkyl‐3‐methyl‐2,5‐dihydro‐1H‐phosphole oxides were converted to the corresponding phosphole oxides that, by the Diels–Alder reaction with N‐maleimide derivatives or with another unit of phosphole oxide, yielded trapped phosphole oxides or phosphole oxide dimers, respectively, as new 7‐phosphanorbornene 7‐oxides. The stereostructures of three derivatives were evaluated by single crystal X‐ray analysis. The regio‐ and stereospecific dimerization was studied by B3LYP/6‐31G(d,p) quantum chemical calculations, whose results were in accord with syntheses. Novel mechanistic features were explored. The geometrical data obtained by single crystal X‐ray analysis validated the results of quantum chemical calculations, as the deviation was less than 3%.  相似文献   

9.
The zirconocene complex [{(C6F5)2B‐(CH2)3‐Cp}(Cp‐PtBu2)ZrCl2] ( 6 ; Cp=cyclo‐C5H4) was prepared by hydroboration of [(allyl‐Cp)(Cp‐PtBu2)ZrCl2] ( 5 ) with HB(C6F5)2 (“Piers’ borane”). It represents a frustrated Lewis pair (FLP) in which both the Lewis acid and the Lewis base were attached at the metallocene framework. Its reaction with 1‐pentyne did not result in the 1,2‐addition of or deprotonation reaction by the FLP, but rather in the 1,1‐carboboration of the triple bond, thereby obtaining a Z/E mixture (1.2:1) of the respective organometallic substituted alkenes 7 . The analogous reaction of 1‐pentyne with the phosphorous‐free system [{(C6F5)2B‐(CH2)3‐Cp)}CpZrCl2] ( 9 ) gave the respective 1,1‐carboboration products ( Z‐10 / E‐10 ≈1.3:1).  相似文献   

10.
Five conical calix[4]arenes that have a PPh2 group as the sole functional group anchored at their upper rim were assessed in palladium‐catalysed cross‐coupling reactions of phenylboronic acid with aryl halides (dioxane, 100 °C, NaH). With arylbromides, remarkably high activities were obtained with the catalytic systems remaining stable for several days. The performance of the ligands is comparable to a Buchwald‐type triarylphosphane, namely, (2′‐methyl[1,1′‐biphenyl]‐2‐yl)diphenylphosphane, which in contrast to the calixarenyl phosphanes tested may display chelating behaviour in solution. With the fastest ligand, 5‐diphenylphosphanyl‐25,26,27,28‐tetra(p‐methoxy)benzyloxy‐calix[4]arene ( 8 ), the reaction turnover frequency for the arylation of 4‐bromotoluene was 321 000 versus 214 000 mol(ArBr).mol(Pd)?1. h?1 for the reference ligand. The calixarene ligands were also efficient in Suzuki cross‐coupling reactions with aryl chlorides. Thus, by using 1 mol % of [Pd(OAc)2] associated with one of the phosphanes, full conversion of the deactivated arenes 4‐chloroanisole and 4‐chlorotoluene was observed after 16 h. The high performance of the calixarenyl–phosphanes in Suzuki–Miyaura coupling of aryl bromides possibly relies on their ability to stabilise a monoligand [Pd0L(ArBr)] species through supramolecular binding of the Pd‐bound arene inside the calixarene cavity.  相似文献   

11.
Further studies have been conducted on the condensation of electron-rich arenes or heteroarenes with the dienic system of phosphole P-complexes. According to the X-ray crystal structure analysis of one of the resulting 2-aryl-3-phospholene P-complexes, the condensation takes place on the side of the diene opposite to the complexing group. The decomplexation of the phospholene P–Mo(CO)5 and P–W(CO)5 complexes, respectively, by reaction with sulfur or halogens and tertiary amines yields the corresponding P-sulfides and oxides with full retention of the stereochemistry at phosphorus. Double condensation of the phosphole P-complexes onto the 2 and 5 positions of thiophene and furan ultimately leads to phosphole–thiophene–phosphole and phosphole–furan–phosphole chains. The first type has been characterized by X-ray crystal structure analysis of its P,P-disulfide. No electronic delocalization appears to take place along the chain.  相似文献   

12.
Conjugated systems based on phospholes and 1,1′‐biphospholes bearing 3,4‐ethylenedithia bridges have been prepared using the Fagan–Nugent route. The mechanism of this organometallic route leading to intermediate zirconacyclopentadienes has been investigated by using theoretical calculations. This study revealed that the oxidative coupling leading to zirconacyclopentadienes is favored over oxidative addition within the S? C≡C bond both thermodynamically and kinetically. The impact of the presence of the S atoms on the optical and electrochemical behavior of the phospholes and 1,1′‐biphospholes has been systematically evaluated both experimentally and theoretically. A comparison with their “all‐carbon” analogues is provided. Of particular interest, this comparative study revealed that the introduction of S atoms has an impact on the electronic properties of phosphole‐based conjugated systems. A decrease of the HOMO–LUMO separation and a stabilization of the LUMO level were observed. These general trends are also observed with 1,1′‐biphospholes exhibiting σ–π conjugation. The P atom of the 3,4‐ethylenedithiaphospholes can be selectively oxidized by S8 or O2. These P modifications result in a lowering of the HOMO–LUMO separation as well as an increase of the reduction and oxidation potentials. The S atoms of the 3,4‐ethylenedithia bridge of the 2,5‐phosphole have been oxidized using m‐chloroperoxybenzoic acid. The resulting 3,4‐ethylenesulfoxide oxophosphole was characterized by an X‐ray diffraction study. Experimental and theoretical studies show that this novel chemical manipulation results in an increase of the HOMO–LUMO separation and an important decrease of the LUMO level. The electropolymerization of 2‐thienyl‐capped 3,4‐ethylenedithiathioxophosphole and 1,1′‐biphosphole is reported. The impact of the S substituents on the polymer properties is discussed.  相似文献   

13.
A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N‐substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo‐boration cyclisation reaction, which afforded the 5‐alkylidene‐4,5‐dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1‐carboboration is favoured as a result of the increased steric hindrance (1,3‐allylic strain) in the 5‐alkylidene‐4,5‐dihydrooxazolium borate species.  相似文献   

14.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

15.
The acetylenes possessing one and two 1‐phospholyl groups were synthesized by reaction of the alkynyl Grignard reagents with the 1‐chlorophosphole and converted to the corresponding phosphole sulfides. Reaction of the 1‐phenylethynylphosphole sulfide with CpCo(CO)2 resulted in η4‐complexation on the phosphole moiety. The structures of the di(1‐phospholyl)acetylene disulfide and the [η4‐(1‐phenylethynylphosphole sulfide)]cobalt(I) complex were characterized by X‐ray crystallography. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:344–349, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20230  相似文献   

16.
Treatment of 2‐hydroxy‐, 2‐mercapto‐, and 2‐ethoxycarbonylamino‐benzonitriles 12 with 2‐fluoro‐ or 2‐nitrophenacylbromides 13 under alkaline conditions provided the corresponding benzofuran, benzothiophene, and indole intermediates 10 , respectivelly. Nucleophilic cyclization of these compounds led to the corresponding tetracyclic quinolinones 7a, 7b , and 3. Denitrocyclization reaction of compounds 10 (R = NO2) was found especially useful. Compounds 7a, 7b , and 3 were converted to their chloro derivatives 14a‐c , which were reduced with hydrogen and a catalyst to the corresponding compounds 8a, 8b , and 2. The presented pathway represents a new method of preparation of quindoline 2 and its O and S analogs 8. Chloro derivatives 14 are reactive enough to provide the corresponding methoxy derivatives 15 and dimethylamino derivatives 16. Methylation of compounds 7a and 7b with iodomethane providing mixtures of major N‐methyl derivatives 17 and minor O‐methyl derivatives 15 were also studied.  相似文献   

17.
The reaction of the aminopyrazole 1 with benzenesulfonyl chloride, arenediazonium salt, chloroacetyl chloride, ethoxy methyleneamlononitrile and with ethyl 2‐cyano‐3‐ethoxyacrylate gave the substituted 3‐methyl‐1‐phenylpyrazole 2–5a,b . Compound 5b was cyclized to 6 and to 7 by treating it with AlCl3 and with POCl3, respectively. Compound 6 converted to 7 by boiling it in POCl3/PCl5. Compound 10b was produced through reaction of 9 with acetophenone. Reaction of 1 with benzylidinemalononitrile afforded 11 . New methods for preparation of 15 and 16 are described. The reaction of 8 with malononitrile, thiosemicarbazide, phenyl hydrazine and acetophenone afforded compounds 18–21 . The reaction of 21 with malononitrile gave 22 . Compounds 23–26 were produced upon reaction of 10a with malononitrile, phenyl hydrazine, thiosemicarbazide, semicarbazide and with benzaldehyde, respectively.  相似文献   

18.
Shiqing Xu  Xin Yan  Qian Zhang  Ying Chen 《合成通讯》2013,43(21):3801-3808
The reaction of 7‐mercapto‐4‐methylcoumarin (4) with 1‐mono‐ and 1,1‐dimethyl propargyl alcohols in H3PO4 afforded the corresponding β‐(7‐coumarinthio)ketones with a rearrangement of the carbon chain of propargyl. A possible mechanism of this rearrangement was proposed.  相似文献   

19.
Ethene and two kinds of nitrating reagents (HNO3 and N2O5) were included in respective molecular systems, which progressed through a two‐stage electrophilic and free radical nitrosubstitution, resulting in the corresponding nitroethene compounds. Subsequent halogenation (using Cl2 and Br2) and amination (using ammonia) were then performed, also by electrophilic and radical substitution, to produce the target 1,1‐diamino‐2,2‐dinitroethene (FOX‐7) derivatives. All transition state species were identified using a two‐ or three‐structure Synchronous Transit‐Guided Quasi‐Newton between the Cartesian coordinates of the related molecular systems at specific reaction stages. The modeling results suggest that N2O5 is the better agent for nitration and bromine is suitable for use in halogenation. The comparable activation energies throughout the reaction stages were considered to imply the most feasible pathways of FOX‐7 synthesis. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
Trialkynyl(vinyl)silanes CH2?CH? Si(C?C? R)3 (R = Bu, Ph, p‐tolyl) were prepared and treated with 9‐borabicyclo[3.3.1]nonane (9‐BBN). Consecutive 1,2‐hydroboration and intramolecular 1,1‐carboboration reactions (each requires different reaction conditions) were studied. 1,2‐Hydroboration of the Si? vinyl group takes place at ambient temperature (23°C in tetrahydrofuran), followed by intramolecular 1,1‐vinylboration to give 1‐silacyclopent‐2‐ene derivatives, bearing still two alkynyl functions at the silicon atom. Further treatment with a second equivalent of 9‐BBN affords 1‐alkenyl‐1‐(alkynyl)‐1‐silacyclopent‐2‐ene derivatives. These undergo intramolecular 1,1‐vinylboration to give 4‐silaspiro[3.4]octa‐1,5‐dienes bearing the boryl groups at 2 and 6 positions. Protodeborylation of all new compounds (intermediates and final products) using acetic acid in slight excess afforded corresponding silanes including spirosilanes. All compounds were characterized using multinuclear NMR spectroscopy (1H, 11B, 13C, 29Si) in solution state. Solid‐state structures for one of the trialkynyl(vinyl)silanes (R = p‐tolyl) and one of the 1‐silacyclopent‐2‐ene derivatives (R = Ph) were confirmed using X‐ray diffraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号