首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

2.
To develop a metal–organic framework (MOF) for hydrogen storage, SNU‐200 incorporating a 18‐crown‐6 ether moiety as a specific binding site for selected cations has been synthesized. SNU‐200 binds K+, NH4+, and methyl viologen(MV2+) through single‐crystal to single‐crystal transformations. It exhibits characteristic gas‐sorption properties depending on the bound cation. SNU‐200 activated with supercritical CO2 shows a higher isosteric heat (Qst) of H2 adsorption (7.70 kJ mol?1) than other zinc‐based MOFs. Among the cation inclusions, K+ is the best for enhancing the isosteric heat of the H2 adsorption (9.92 kJ mol?1) as a result of the accessible open metal sites on the K+ ion.  相似文献   

3.
A three‐dimensional (3D) cage‐like organic network (3D‐CON) structure synthesized by the straightforward condensation of building blocks designed with gas adsorption properties is presented. The 3D‐CON can be prepared using an easy but powerful route, which is essential for commercial scale‐up. The resulting fused aromatic 3D‐CON exhibited a high Brunauer–Emmett–Teller (BET) specific surface area of up to 2247 m2 g?1. More importantly, the 3D‐CON displayed outstanding low pressure hydrogen (H2, 2.64 wt %, 1.0 bar and 77 K), methane (CH4, 2.4 wt %, 1.0 bar and 273 K), and carbon dioxide (CO2, 26.7 wt %, 1.0 bar and 273 K) uptake with a high isosteric heat of adsorption (H2, 8.10 kJ mol?1; CH4, 18.72 kJ mol?1; CO2, 31.87 kJ mol?1). These values are among the best reported for organic networks with high thermal stability (ca. 600 °C).  相似文献   

4.
A novel metal‐doping strategy was developed for the construction of iron‐decorated microporous aromatic polymers with high small‐gas‐uptake capacities. Cost‐effective ferrocene‐functionalized microporous aromatic polymers (FMAPs) were constructed by a one‐step Friedel–Crafts reaction of ferrocene and s‐triazine monomers. The introduction of ferrocene endows the microporous polymers with a regular and homogenous dispersion of iron, which avoids the slow reunion that is usually encountered in previously reported metal‐doping procedures, permitting a strong interaction between the porous solid and guest gases. Compared to ferrocene‐free analogues, FMAP‐1, which has a moderate BET surface area, shows good gas‐adsorption capabilities for H2 (1.75 wt % at 77 K/1.0 bar), CH4 (5.5 wt % at 298 K/25.0 bar), and CO2 (16.9 wt % at 273 K/1.0 bar), as well as a remarkably high ideal adsorbed solution theory CO2/N2 selectivity (107 v/v at 273 K/(0–1.0) bar), and high isosteric heats of adsorption of H2 (16.9 kJ mol?1) and CO2 (41.6 kJ mol?1).  相似文献   

5.
Viologens readily thread bis‐p‐phenylene crown ethers to form [2]pseudorotaxanes. However, the binding of sterically hindered 3,3′‐dimethylviologens is very weak. Density functional theory (DFT) calculations indicated that the additional energy cost of “flattening” is substantial, 55 kJ mol?1, and prevents the formation of a stable host–guest complex. The structures of [2]pseudorotaxanes determined by X‐ray crystallography are in good agreement with the NMR characterisation and DFT results. Their association constants and thermodynamic parameters in solution were measured by using a dilution method and, for the first time, by host–guest nuclear Overhauser effect (NOE) correlations. The NOE approach was subsequently applied to study the sterically hindered analogues and it was shown that the binding in 3,3′‐dimethyl‐N,N‐dibenzyl [2]pseudorotaxane is by 8.5 kJ mol?1 weaker than in its regular analogue. The proposed technique helps to quantify weak interactions in [2]pseudorotaxanes and can be applied to other host‐guest complexes.  相似文献   

6.
Geometrical and energetic characteristics of crystal hydrates of individual aromatic sulfonic acids and their complexes with poly(vinyl alcohol) as well as the paths for the proton transport in them are calculated in the framework of the density functional theory (version B3LYP) employing the 6-31G** basis set. The energy of attachment of water to ortho-substituted aromatic sulfonic acids is demonstrated to diminish from 74.4 to 54.8 kJ mol?1 in the following series of substituents: -OH,-F,-CH3,-H,-Cl, and -COOH. For the dimers that comprise individual phenolsulfonic acids, the energy of attachment of one water molecule to the SO3H group is estimated to be equal to 92–105 kJ mol?1. In the dimers comprising individual phenolsulfonic acids, the specific energy of intermolecular bonds (bond energy per monomer molecule) is found to be equal to 49.3 and 58.5 kJ mol?1 for, respectively, phenol-2,4-disulfo and phenol-2-sulfo acids. During the formation of polymer membranes based on poly(vinyl alcohol) and phenolsulfonic acids, it is energetically favorable that at least one water molecule should remain in the vicinity of the SO3H fragment. According to the calculations, the proton migration along the SO3H group in anhydrous environment is hampered by a barrier of 125–132 kJ mol?1. In the presence of water, the proton conductivity is of a relay character, with an activation barrier equal to 21–33 kJ mol?1. The latter value is close to experimental data (17–25 kJ mol?1).  相似文献   

7.
The MNDO calculations of protonated polyfluorobenzenes [Ph-Fn]H+ indicate the possibility of a relatively free migration of the hydrogen proton with energy barriers of 125–145 kJ mol?1. At a higher degree of substitution (n) the protonation of the ipso carbon atom occupied by fluorine becomes energetically feasible, along with analogous migrations of fluorine, which, however, are energetically the most advantageous (ΔEa ~ 230 kJ mol?1). In addition to bridged fluoronium ions, relatively stable cyclic intermediates were also found, which make possible a rearrangement to the difluoromethylenecyclopentadienyl cation and thus the elimination of CF2 observed in collision-induced dissociation mass spectra.  相似文献   

8.
Seven new Hofmann-dma type clathrates Cd(dma)2Ni(CN)4-xG (x = 1, G = aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine and x = 2, G = 2,4,6-trim ethylaniline) were prepared by replacing the amine in a Hofmann type clathrate Cd(NH3)2Ni(CN)4-2G by dimethylamine (dma). The structure of the Hofmann-dma type clathrate is formed with stacked host two-dimensional metal complexes of Cd(dma)2 Ni(CN)4 and guest molecules accommodated in the space between the stacked host complexes. This basic structure scheme is the same as that of the Hofmann type clathrate. However, the guest species accommodated in the Hofmann-dma type clathrate are more various than those of the Hofmann type clathrate, and their crystal structures are classified into four types depending on the geometry of the guest species. In order to clarify the structure of the Hofmann-dma type clathrate, single crystal X-ray diffraction experiments were canied out on the seven new clathrates, and the crystal structures of the o-, m- and p- toluidine clathrates were refined. The X-ray structure analyses showed that the host two-dimensional metal complex of the Hofmann-dma tvpe clathrate has stmctural flexibility to form a puckered structure, which results from the angular distortion of the bond between Cd and N of the cyanide bridge in the host two-dimensional complex. This stmctural flexibility of the host complex leads to the diversity of crystal structures and guest species in Hofmann-dma type clathrates. Translated fromZhurnal Strukturnmoi Khimii, Vol. 40, No. 5, pp. 898–926, September–October, 1999.  相似文献   

9.
The structures of the inclusion compounds 4,4′‐(cyclohexane‐1,1‐diyl)diphenol–3‐chlorophenol (1/1) and 4,4′‐(cyclohexane‐1,1‐diyl)diphenol–4‐chlorophenol (1/1), both C18H20O2·C6H5ClO, are isostructural with respect to the host molecule and are stabilized by extensive host–host, host–guest and guest–host hydrogen bonding. The packing is characterized by layers of host and guest molecules. The kinetics of thermal decomposition follow the R2 contracting‐area model, kt = [1 − (1 − α)½], and yield activation energies of 105 (8) and 96 (8) kJ mol−1, respectively.  相似文献   

10.
The sequential segregation of Sn and Sb to the surface of a Cu(111) single crystal was measured in the temperature range 400–1100 K by Auger electron spectroscopy. It was found that Sn with the higher diffusion coefficient first segregates to the surface and then is replaced by the slower‐segregating Sb. The results were fitted by a ternary segregation model yielding segregation energies (ΔGSn = 76.3 kJ mol?1, ΔGSb = 95.9 kJ mol?1), interaction parameters (ΩSnCu = 3.8 kJ mol?1, ΩSbCu = 16.2 kJ mol?1, ΩSnSb = ?5.3 kJ mol?1) and diffusion coefficients (D0(Sn) = 1.8 × 10?5 m2 s?1, ESn = 173 kJ mol?1, D0(Sb) = 6.0 × 10?5 m2 s?1, ESb = 205 kJ mol?1) for both species. The validity of the interaction coefficients and segregation energies was verified using the Guttman equations for equilibrium segregation in ternary systems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This study compares thermodynamic stability of clathrate compounds belonging to three isomorphous series: [Mpy4(NCO)2]*2Py (M = M(II) = Mn, Fe, Co, Ni), [Mpy4(NO3)2]*2Py (M = Mn, Co, Ni, Cu, Zn), and [CuPy4(NO3)2]*2G (G = pyridine, benzene, THF, chloroform). Thermodynamic parameters (Δ Hav 0, Δ Sav 0 and Δ G298 0 of the dissociation of the clathrates were determined from the dependences of the guest equilibrium pressure over the clathrates versus temperature (tensimetric method). Clathrate phases, when differed only in the host formula, demonstrated the same order of thermodynamic stability as one expected for the host complexes in solution: Mn < Fe < Co < Ni < Cu > Zn for M and NCO > NO3 for X. The influence of the host complex formulation was comparable to the effect of guest template, the effect observed in the third series with the variation of the guest component. This study illustrates a dramatic impact of the stability of the host molecule on the overall stability of the clathrate phases, the impact being comparable to a contribution arising from the host–guest complementarity.  相似文献   

12.
Syndiotactic polystyrene (sPS) forms a clathrate phase with a variety of compounds. Not only rigid molecules but also flexible molecules can be stored in the cavities of the clathrate phase. To clarify the adjustment mechanism of a flexible guest molecule to the sPS clathrate system, the host and guest structures were investigated by means of solid-state 13C NMR and Raman spectroscopy, and X-ray diffractometry for the sPS clathrates with a series of n-alkanes from n-hexane to n-decane. Although the 010 spacing of the host sPS lattice expanded slightly on going from n-hexane to n-heptane, it decreased markedly at n-octane and then increased gradually with the chain length of guest n-alkane. The conformational change of guest n-alkane molecules was involved in this anomalous change in the 010 spacing. Majority of the n-hexane and n-heptane molecules took extended chain structures in the clathrates, whereas all longer n-alkanes took bent chain structures. The mean-square displacement of hydrogen atoms in the clathrates was estimated by quasielastic neutron scattering experiments. It was confirmed that the host lattice contraction suppressed thermal motion of the clathrate system.  相似文献   

13.
Covalent organic frameworks are a new class of crystalline organic polymers possessing a high surface area and ordered pores. Judicious selection of building blocks leads to strategic heteroatom inclusion into the COF structure. Owing to their high surface area, exceptional stability and molecular tunability, COFs are adopted for various potential applications. The heteroatoms lining in the pores of COF favor synergistic host–guest interaction to enhance a targeted property. In this report, we have synthesized a resorcinol‐phenylenediamine‐based COF which selectively adsorbs CO2 into its micropores (12 Å). The heat of adsorption value (32 kJ mol?1) obtained from the virial model at zero‐loading of CO2 indicates its favorable interaction with the framework. Furthermore, we have anchored small‐sized Ag nanoparticles (≈4–5 nm) on the COF and used the composite for chemical fixation of CO2 to alkylidene cyclic carbonates by reacting with propargyl alcohols under ambient conditions. Ag@COF catalyzes the reaction selectively with an excellent yield of 90 %. Recyclability of the catalyst has been demonstrated up to five consecutive cycles. The post‐catalysis characterizations reveal the integrity of the catalyst even after five reaction cycles. This study emphasizes the ability of COF for simultaneous adsorption and chemical fixation of CO2 into corresponding cyclic carbonates.  相似文献   

14.
The recognition of 4‐alkylpyridines by water‐soluble poly(ethylene oxide)–zinc porphyrin conjugates was studied with a focus on the thermodynamic parameters of binding. Microcalorimetric studies indicated that binding of the alkyl group of the guest in water is driven by the entropic term (δΔH0H0(4‐pentylpyridine)? ΔH0(4‐methylpyridine)=+1.7 kJ mol?1, δTΔS0=TΔS0(4‐pentylpyridine)? TΔS0(4‐methylpyridine)=+11.8 kJ mol?1 at 298 K), thus showing the significance of water reorganization during host–guest interaction. The enthalpy–entropy compensation temperature of binding of 4‐alkylpyridines was as low as 38 K; only below this temperature could the enthalpic term be a driving force. The binding affinity was modulated by the addition of cations and by varying the degree of polymerization of poly(ethylene oxide), which suggests that guest binding is coupled with polymer conformation.  相似文献   

15.
A new clathrate type has been discovered in the Ba/Cu/Zn/P system. The crystal structure of the Ba8M 24P28+δ (M =Cu/Zn) clathrate is composed of the pentagonal dodecahedra common to clathrates along with a unique 22‐vertex polyhedron with two hexagonal faces capped by additional partially occupied phosphorus sites. This is the first example of a clathrate compound where the framework atoms are not in tetrahedral or trigonal‐pyramidal coordination. In Ba8M 24P28+δ a majority of the framework atoms are five‐ and six‐coordinated, a feature more common to electron‐rich intermetallics. The crystal structure of this new clathrate was determined by a combination of X‐ray and neutron diffraction and was confirmed with solid‐state 31P NMR spectroscopy. Based on chemical bonding analysis, the driving force for the formation of this new clathrate is the excess of electrons generated by a high concentration of Zn atoms in the framework. The rattling of guest atoms in the large cages results in a very low thermal conductivity, a unique feature of the clathrate family of compounds.  相似文献   

16.
The gas‐phase elimination of phenyl chloroformate gives chlorobenzene, 2‐chlorophenol, CO2, and CO, whereasp‐tolyl chloroformate produces p‐chlorotoluene and 2‐chloro‐4‐methylphenol CO2 and CO. The kinetic determination of phenyl chloroformate (440–480oC, 60–110 Torr) and p‐tolyl chloroformate (430–480°C, 60–137 Torr) carried out in a deactivated static vessel, with the free radical inhibitor toluene always present, is homogeneous, unimolecular and follows a first‐order rate law. The rate coefficient is expressed by the following Arrhenius equations: Phenyl chloroformate: Formation of chlorobenzene, log kI = (14.85 ± 0.38) (260.4 ± 5.4) kJ mol?1 (2.303RT)?1; r = 0.9993 Formation of 2‐chlorophenol, log kII = (12.76 ± 0.40) – (237.4 ± 5.6) kJ mol?1(2.303RT)?1; r = 0.9993 p‐Tolyl chloroformate: Formation of p‐chlorotoluene: log kI = (14.35 ± 0.28) – (252.0 ± 1.5) kJ mol–1 (2.303RT)?1; r = 0.9993 Formation of 2‐chloro‐4‐methylphenol, log kII = (12.81 ± 0.16) – (222.2 ± 0.9) kJ mol?1(2.303RT)–1; r = 0.9995 The estimation of the kI values, which is the decarboxylation process in both substrates, suggests a mechanism involving an intramolecular nucleophilic displacement of the chlorine atom through a semipolar, concerted four‐membered cyclic transition state structure; whereas the kII values, the decarbonylation in both substrates, imply an unusual migration of the chlorine atom to the aromatic ring through a semipolar, concerted five‐membered cyclic transition state type of mechanism. The bond polarization of the C–Cl, in the sense Cδ+ … Clδ?, appears to be the rate‐determining step of these elimination reactions.  相似文献   

17.
Three conformational polymorphs of N‐(4′‐methoxyphenyl)‐3‐bromothiobenzamide, yellow α, orange β, and yellow γ, have been identified by single‐crystal X‐ray diffraction. The properties and structure of the polymorphs were examined with FT Raman, FTIR (ATR), and UV/Vis spectroscopy, as well as differential scanning calorimetry. Computational data on rotational barriers in the isolated gas‐phase molecule indicate that the molecular conformation found in the α form is energetically preferred, but only by around 2 kJ mol?1 over the γ conformation. The planar molecular structure found in the β form is destabilized by 10–14 kJ mol?1, depending on the calculation method. However, experimental evidence suggests that the β polymorph is the most stable crystalline phase at room temperature. This is attributed to the relative planarity of this structure, which allows more and stronger intermolecular interactions, that is, more energetically effective packing. Calculated electronic‐absorption maxima were in agreement with experimental spectra.  相似文献   

18.
Cation‐radicals and dications corresponding to hydrogen atom adducts to N‐terminus‐protonated Nα‐glycylphenylalanine amide (Gly‐Phe‐NH2) are studied by combined density functional theory and Møller‐Plesset perturbational computations (B3‐MP2) as models for electron‐capture dissociation of peptide bonds and elimination of side‐chain groups in gas‐phase peptide ions. Several structures are identified as local energy minima including isomeric aminoketyl cation‐radicals, and hydrogen‐bonded ion‐radicals, and ylid‐cation‐radical complexes. The hydrogen‐bonded complexes are substantially more stable than the classical aminoketyl structures. Dissociations of the peptide N? Cα bonds in aminoketyl cation‐radicals are 18–47 kJ mol?1 exothermic and require low activation energies to produce ion‐radical complexes as stable intermediates. Loss of the side‐chain benzyl group is calculated to be 44 kJ mol?1 endothermic and requires 68 kJ mol?1 activation energy. Rice‐Ramsperger‐Kassel‐Marcus (RRKM) and transition‐state theory (TST) calculations of unimolecular rate constants predict fast preferential N? Cα bond cleavage resulting in isomerization to ion‐molecule complexes, while dissociation of the Cα? CH2C6H5 bond is much slower. Because of the very low activation energies, the peptide bond dissociations are predicted to be fast in peptide cation‐radicals that have thermal (298 K) energies and thus behave ergodically. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The energies of protonation and Na+ cationization of glycine (GLY) and its (GLY ? H + Na) salt in the gas phase were calculated using ab inltio calculations. The proton affinity of GLY, valued at the MP2/6–31G*//3-21G level, is 937 kJ mol?1. The amino function is confirmed to be the most favourable site of protonation: ‘proton affinities’ of the carbonyl and hydroxyl functions are calculated to be 75 and 180 kJ mol?1, respectively, lower than that of NH2 at the MP2/6-31G*//3–21G level. Calculations performed up to the MP2/6–31G*//3–21G level give the Na+ affinity of GLY as 189 kJ mol?1 and the H+ and Na+ affinities of (GLY – H + Na) as 1079 and 298 kJ mol?1, respectively. The geometries of all neutral and protonated species optimized with the 3–21G basis set are described. Both H* and Na+ cations complex preferably between the nitrogen atom and the carbonyl oxygen atom, leading to pseudo-five-membered ring structures in which Na? O and Na? N bonds lengths are greater than 2 Å.  相似文献   

20.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号