首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

2.
The title compound, trans‐[RuIICl2(N1‐mepym)4] (mepym is 4‐methylpyrimidine, C5H6N2), obtained from the reaction of trans,cis,cis‐[RuIICl2(N1‐mepym)2(SbPh3)2] (Ph is phenyl) with excess mepym in ethanol, has fourfold crystallographic symmetry and has the four pyrimidine bases coordinated through N1 and arranged in a propeller‐like orientation. The Ru—N and Ru—Cl bond distances are 2.082 (2) and 2.400 (4) Å, respectively. The methyl group, and the N3 and Cl atoms are involved in intermolecular C—H?N and C—­H?Cl hydrogen‐bond interactions.  相似文献   

3.
The title compound, mer‐[RuCl3N(C18H15As)2], is the first structurally characterized example of a nitride complex in which ruthenium is six‐coordinated to monodentate ligands only. The Ru[triple‐bond]N bond length [1.6161 (15) Å] is relatively long, and the trans influence of the nitride ligand is reflected by the difference between the Ru—Cltrans and Ru—Clcis bond lengths [0.1234 (4) Å]. The N—Ru—Cltrans axis is sited on a twofold axis.  相似文献   

4.
The title compound, 7‐[(Ph2P)Au(PPh3)]‐8‐(CH3)‐7,8‐nido‐C2B9H10]·­0.5CH2Cl2 or [Au(C15H23B9P)­(C18H15P)]·­0.5CH2Cl2, is the first reported gold derivative of the ligand [7‐­(Ph2P)‐8‐(CH3)‐7,8‐nido‐C2B9H10]?. It has a mono­nuclear structure with the gold centre in an essentially linear coordination [P—Au—P 174.041 (15)°]. The open C2B3 face contains one H atom that is strongly bonded to the central B atom and semi‐bridging to a neighbouring B atom [B—H distances 1.070 (16) and 1.45 (3) Å].  相似文献   

5.
The tri­chloro‐bridged dinuclear RuII complex tri‐μ‐chloro‐bis{[1,1,1‐tris­(di­phenyl­phosphino­methyl)­ethane‐κ3P,P′,P′′]ruthenium(II)} hexa­fluoro­phosphate ethanol solvate, [Ru2Cl3(tripod)2]PF6·C2H6O, containing the tripod [1,1,1‐tris­(di­phenyl­phosphino­methyl)­ethane, C41H39P3] ligand, was unexpectedly obtained from the reaction of [RuIIICl3(tripod)] with 1,4‐bis­(di­phenyl­phosphino)­butane (dppb), followed by pre­cipitation with NH4PF6. The magnetic moment of the compound at room temperature indicates that the dinuclear [Ru2(μ‐Cl)3(tripod)2]+ cation is diamagnetic. A single‐crystal X‐ray structure determination revealed that the two Ru atoms are bridged by the three Cl atoms. The coordination sphere of each Ru atom is completed by the three P atoms of a tripod ligand. The two P3Ru units are exactly eclipsed, while the bridging Cl atoms are staggered with respect to the six P atoms. The Ru⋯Ru distance is 3.3997 (7) Å and the mean Cl—Ru—Cl bond angle is 77.7°.  相似文献   

6.
In the title compound, catena‐poly[diselanylbis(1,3‐dimethyl‐1H‐imidazol‐3‐ium) [μ3‐chlorido‐tetra‐μ2‐chlorido‐tricuprate(I)]], {(C10H16N4Se2)[Cu3Cl5]}n, the diselenide dication is stabilized by catena‐[Cu3Cl5]2− anions which associate through strong Cu—Cl bonds [average length = 2.3525 (13) Å] to form polymeric chains. The polymeric [Cu3Cl5]2− anion contains crystallographically imposed twofold rotation symmetry, with distorted trigonal‐planar and tetrahedral geometries around the two symmetry‐independent Cu atoms. Likewise, the Se—Se bond of the cation is centered on a twofold rotation axis.  相似文献   

7.
The title complex, di‐μ‐chloro‐bis­[chloro­(η6p‐cymene)ruthenium(II)]–9H‐carbazole (1/2), [Ru2Cl4(C10H14)2]·2C12H9N, is composed of one [RuCl26p‐cymene)]2 and two 9H‐carbazole mol­ecules. There are one‐half of a dinuclear complex and one 9H‐carbazole mol­ecule per asymmetric unit. In the dinuclear complex, each of the two crystallographically equivalent Ru atoms is in a pseudo‐tetra­hedral environment, coordinated by a terminal Cl atom, two bridging Cl atoms and the aromatic hydro­carbon, which is linked in a η6 manner; the Ru⋯Ru separation is 3.688 (3) Å. The title complex has a crystallographic centre of symmetry located at the mid‐point of the Ru⋯Ru line. Inter­molecular N—H⋯Cl and π–π stacking inter­actions are observed. These inter­actions form a four‐pointed star‐shaped ring and one‐dimensional linear chains of edge‐fused rings running parallel to the [100] direction, which stabilize the crystal packing.  相似文献   

8.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

9.
The crystal structure of the title complex, (η6‐hexamethylbenzene)bis(trifluoromethanesulfonato‐O)(2,4,6‐trimethylanil­ine‐N)ruthenium(II), [Ru(CF3O3S)2(C12H18)(C9H13N)], is described. The complex has the classic three‐legged piano‐stool structure with a planar arene 1.667 Å from the metal, two monodentate O‐bound tri­fluoro­methane­sulfonate ligands [Ru—O 2.169 (2) and 2.174 (2) Å] and one N‐bound mesidine ligand [Ru—N 2.198 (2) Å]. The Ru—N distance is relatively long and the average Ru—O distance is relatively short when compared with previously characterized RuII complexes.  相似文献   

10.
In the cation of the title complex, cis,cis,cis‐[Ru(η2‐O2CMe)(dppe)2]PF6·2MeOH [dppe is 1,2‐bis­(di­phenyl­phosphino)­ethane, C26H24P2], the Ru atom is in a pseudo‐octahedral coordination environment with two chelating dppe ligands and one chelating acetate ligand. Intra‐phosphine and intra‐acetate bond lengths and angles are unexceptional. Deviations from idealized octahedral coordination angles at ruthenium [O—Ru—O 59.43 (8)° and P—Ru—P 103.19 (2)°] presumably derive from constraints imposed by the chelate rings. The Ru—P distances for the mutually trans P‐donor atoms [2.3785 (6) Å] are significantly longer than those for the Ru—P linkages trans to the acetate ligand [2.3074 (6) Å]. The Ru1, C1 and C2 atoms lie on a twofold axis, and atom P3 of the anion lies on an inversion centre.  相似文献   

11.
The crystal structure of the title compound, [Bi3(C6H12N3O3)2]Cl3·6H2O, which was described in the space group R3 [Hegetschweiler, Ghisletta & Gramlich (1993). Inorg. Chem. 32 , 2699–2704], has been redetermined in the revised space group R32 as suggested by Marsh [Acta Cryst. (2002), B 58 , 893–899]. Accordingly, the significant difference in the Bi—N bond distances of 2.43 (2) and 2.71 (1) Å, as noted in the previous study, proved to be an artifact. As a consequence, the [Bi3(H−3taci)2]Cl6/3 entity (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol) adopts D3 symmetry and the three Bi atoms lie on C2 axes with equal Bi—N bond distances of 2.636 (3) Å.  相似文献   

12.
The Ru—N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2′:6′,2′′‐ter­pyridine and azpy is 2‐(phenyl­azo)­pyridine], are Ru—Npy 2.063 (4), Ru—Nazo 2.036 (4), Ru—Nnitro 2.066 (3) Å, and Ru—Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and π‐­backbonding [dπ(Ru) π*(azo)] is decreased.  相似文献   

13.
The novel title ruthenium(II) complex, [RuCl(C10H14)(C10H10N3OS)], was synthesized from the reaction of 1,2,4‐triazepine, a new class of bidentate ligands, with [Ru(p‐cymene)Cl2]2. The 1,2,4‐triazepine ligand is coordinated to the metal centre through the N‐4 and S atoms, forming a four‐membered chelate ring. This is the first structural example of a transition metal complex containing a 1,2,4‐triazepine ligand.  相似文献   

14.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

15.
A first preliminary report on the crystal structure of a hydrated salt formulated as [Ge(taci)2]Cl4·13H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol) appeared more than 20 years ago [Ghisletta (1994). PhD thesis, ETH Zürich. Switzerland]. At that time it was not possible to discriminate unambiguously between the positions of some of the chloride ions and water O atoms, and disorder was thus postulated. In a new determination, a conclusive scheme of hydrogen bonding proves to be a particularly appealing aspect of the structure. Single crystals of the title compound, C12H30GeN6O64+·4Cl·6H2O or [Ge(taci)2]2Cl8·12H2O, were grown from an aqueous solution by slow evaporation of the solvent. The two [Ge(taci)2]4+ cations exhibit a double‐adamantane‐type structure with exclusive O‐atom coordination and approximate D3d symmetry. The taci ligands adopt a zwitterionic form with deprotonated hydroxy groups and protonated amino groups. Both cations are hydrogen bonded to six water molecules. The structure of the hydration shell of the two cations is, however, slightly different. The {[Ge(taci)2]·6H2O}4+ aggregates are interlinked in all three dimensions by further hydrogen bonds of the types N—H...Cl...H—N, N—H...O(H)2...H—N, (Ge)O...H—O(H)...H—N, N—H...O(H)—H...Cl...H—N, (Ge)O...H—O—H...Cl...H—N, N—H...O(H)—H...Cl...H—(H)O...H—N, (Ge)O...H—O—H...Cl...H—(H)O...H—N and Ge(O)...H—O—H...Cl...H—O—H...O(Ge).  相似文献   

16.
The polyfluorinated title compounds, [M Cl2(C16H16F4N2O2)] or [4,4′‐(HCF2CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 1 ), and M = Pt, ( 2 )], have –C(Hα)2OC(Hβ)2CF2H side chains with H‐atom donors at the α and β sites. The structures of ( 1 ) and ( 2 ) are isomorphous, with the nearly planar (bpy)M Cl2 molecules stacked in columns. Within one column, π‐dimer pairs alternate between a π‐dimer pair reinforced with C—H…Cl hydrogen bonds (α,α) and a π‐dimer pair reinforced with C—Hβ…F(—C) interactions (abbreviated as C—Hβ…F—C,C—Hβ…F—C). The compounds [4,4′‐(CF3CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 3 ), and M = Pt, ( 4 )] have been reported to be isomorphous [Lu et al. (2012). J. Fluorine Chem. 137 , 54–56], yet with disorder in the fluorous regions. The molecules of ( 3 ) [or ( 4 )] also form similar stacks, but with alternating π‐dimer pairs between the (α,β; α,β) and (β,β) forms. Through (C—)H…Cl hydrogen‐bond interactions, one molecule of ( 1 ) [or ( 2 )] is expanded into an aggregate of two inversion‐related π‐dimer pairs, one pair in the (α,α) form and the other pair in the (C—Hβ…F—C,C—Hβ…F—C) form, with the plane normals making an interplanar angle of 58.24 (3)°. Due to the demands of maintaining a high coordination number around the metal‐bound Cl atoms in molecule ( 1 ) [or ( 2 )], the ponytails of molecule ( 1 ) [or ( 2 )] bend outward; in contrast, the ponytails of molecule ( 3 ) [or ( 4 )] bend inward.  相似文献   

17.
The title compound, [Fe2Cl4O(C7H12N2)4], contains vertex‐sharing distorted tetrahedral [FeOCl3]? and octahedral [FeOCl(HpztBu)4]+ moieties (HpztBu is 5‐tert‐­butyl­pyrazole), linked by a bent oxo bridging ligand. The two FeIII centres are also bridged by intramolecular hydrogen bonds between the pyrazole N—H groups and the O2? and Cl? ligands.  相似文献   

18.
The asymmetric unit of the title complex, [PtCl2(C14H38B10P2)]·0.5CH2Cl2 or cis‐[PtCl2{1,2‐(PiPr2)2‐1,2‐C2B10H10}]·0.5CH2Cl2, contains one disordered solvent mol­ecule and two mol­ecules of the complex, in which each PtII atom displays slightly distorted square‐planar coordination geometry. The P atoms connected to the cage C atoms are coordinated to the PtII atom. The Pt—P distances vary slightly [2.215 (3) and 2.235 (4) Å] and the Pt—Cl distances are equal [2.348 (3) and 2.353 (5) Å].  相似文献   

19.
In the title compound, (C6H8N4)[AuCl4]Cl, the 4,4′‐bi(1H‐pyrazol‐2‐ium) dication, denoted [H2bpz]2+, is situated across a centre of inversion, the [AuCl4] anion lies across a twofold axis passing through Cl—Au—Cl, and the Cl anion resides on a twofold axis. Conventional N—H...Cl hydrogen bonding [N...Cl = 3.109 (3) and 3.127 (3) Å, and N—H...Cl = 151 and 155°] between [H2bpz]2+ cations (square‐planar node) and chloride anions (tetrahedral node), as complementary donors and acceptors of four hydrogen bonds, leads to a three‐dimensional binodal four‐connected framework with cooperite topology (three‐letter notation pts). The framework contains channels along the c axis housing one‐dimensional stacks of square‐planar [AuCl4] anions [Au—Cl = 2.2895 (10)–2.2903 (16) Å; interanion Au...Cl contact = 3.489 (2) Å], which are excluded from primary hydrogen bonding with the [H2bpz]2+ tectons.  相似文献   

20.
The structure of trans‐3‐(3‐pyridyl)acrylic acid, C8H7NO2, (I), possesses a two‐dimensional hydrogen‐bonded array of supramolecular ribbons assembled via heterodimeric synthons between the pyridine and carboxyl groups. This compound is photoreactive in the solid state as a result of close contacts between the double bonds of neighbouring molecules [3.821 (1) Å] along the a axis. The crystal structure of the photoproduct, rctt‐3,3′‐(3,4‐dicarboxycyclobutane‐1,2‐diyl)dipyridinium dichloride, C16H16N2O42+·2Cl, (II), consists of a three‐dimensional hydrogen‐bonded network built from crosslinking of helical chains integrated by self‐assembly of dipyridinium cations and Cl anions via different O—H...Cl, C—H...Cl and N+—H...Cl hydrogen‐bond interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号