首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

3.
A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2 ? 2 H2O ( 1? 2 H2O), whose precursor βAlatrz, (1,2,4‐triazol‐4‐yl‐propionate) has been tailored from a β‐amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), 57Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two‐step spin crossover (T1/2=230 K and T1/2=235 K, and T1/2=172 K and T1/2=188 K, respectively) is registered for the first time for a 1,2,4‐triazole‐based FeII 1D coordination polymer. The two‐step SCO configuration is observed in a 1:2 ratio of low‐spin/high‐spin in the intermediate phase for a 1D chain. The origin of the stepwise transition was attributed to a distribution of chains of different lengths in 1? 2 H2O after First Order Reversal Curves (FORC) analyses. A detailed DFT analysis allowed us to propose the normal mode assignment of the Raman peaks in the low‐spin and high‐spin states of 1? 2 H2O. Vibrational spectra of 1? 2 H2O reveal that the BF4? anions and water molecules play no significant role on the vibrational properties of the [Fe(βAlatrz)3]2+ polymeric chains, although non‐coordinated water molecules have a dramatic influence on the emergence of a step in the spin transition curve. The dehydrated material [Fe(βAlatrz)3](BF4)2 ( 1 ) reveals indeed a significantly different magnetic behavior with a one‐step SCO which was also investigated.  相似文献   

4.
The one‐dimensional (1D) transition‐metal oxide MoO3 belt is synthesized and characterized with X‐ray diffraction, scanning electron microscopy, and Raman spectroscopy. Charge‐transfer‐(CT) enhanced Raman scattering of 4‐mercaptobenzoic acid (4‐MBA) on a 1D MoO3 belt was investigated experimentally and theoretically. The chemical enhancement of surface‐enhanced Raman scattering (SERS) of 4‐MBA on the MoO3 belt by CT is in the order of 103. The SERS of 4‐MBA was investigated theoretically by using a quantum chemical method. The remote SERS of 4‐MBA along the 1D MoO3 belt (the light excitation to one side of the MoO3 belt, and the SERS spectrum is collected on the other side of the MoO3 belt) is also shown experimentally, which provides potential applications of SERS. The incident polarization dependence of remote SERS spectra has also been investigated experimentally.  相似文献   

5.
Three transition‐metal–carbonyl complexes [V( L )(CO)3(Cp)] ( 1 ), [Co( L )(CO)(Cp)] ( 2 ), and [Co( L2 )(CO)3]+[CoCO)4]? ( 3 ), each containing stable N‐heterocyclic‐chlorosilylene ligands ( L ; L =PhC(NtBu)2SiCl) were synthesized from [V(CO)4(Cp)], [Co(CO)2(Cp)], and Co2(CO)8, respectively. Complexes 1 , 2 , 3 were characterized by NMR and IR spectroscopy, EI‐MS spectrometry, and elemental analysis. The molecular structures of compounds 1 , 2 , 3 were determined by single‐crystal X‐ray diffraction.  相似文献   

6.
Spin‐crossover metal complexes are highly promising magnetic molecular switches for prospective molecule‐based devices. The spin‐crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin‐crossover iron(II) complex that can be switched between paramagnetic high‐spin and diamagnetic low‐spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level.  相似文献   

7.
8.
How low can you go? An FeII4 square was prepared by self‐assembly and exhibits both thermally induced and photoinduced spin crossover from a system with four high‐spin (HS) centers to one with two high‐spin and two low‐spin (LS) centers. The spin‐crossover sites are located on the same side of the square, and the spin transition and magnetic interactions (see picture) are synergistically coupled.

  相似文献   


9.
Unprecedented anionic FeIII spin crossover (SCO) complexes involving a weak‐field O,N,O‐tridentate ligand were discovered. The SCO transition was evidenced by the temperature variations in magnetic susceptibility, Mössbauer spectrum, and coordination structure. The DFT calculations suggested that larger coefficients on the azo group in the HOMO?1 of a ligand might contribute to the enhancement of a ligand‐field splitting energy. The present anionic SCO complex also exhibited the light‐ induced excited‐spin‐state trapping effect.  相似文献   

10.
Four thiophene functionalized triazole ligands (L1=4-(thenyl)-1,2,4-triazole, L2=4-(thiophene ethyl)-1,2,4-triazole, L3=N-Thiophenylidene-4H-1,2,4-triazole-4-amine, and L4=(4-[(E)-2-(5-sulfothiophene)vinyl]-1,2,4-triazole) were synthesized. These ligands have different lengths and rigidities, while ligand L4 has a sulfonic acid group that can form a hydrogen bond. Five 1D FeII chain complexes were synthesized: [Fe(L1)3](X)2 ⋅ nH2O [X=BF4, n=1.5 ( C1 ); X=ClO4, n=1 ( C2 )], [Fe(L2)3](BF4)2 ⋅ 1.5H2O ( C3 ); [Fe(L3)3](X)2 ⋅ nH2O [X=BF4, n=2 ( C4 ); X=ClO4, n=2.5 ( C5 )]. The results of temperature-dependent magnetic susceptibility reveal that complexes C1 , C2 , and C3 experienced the transition between two spin states. And C4 and C5 maintain high spin states at all temperature ranges. Binuclear complex [Fe2(L3)5(SCN)4] ( C6 ) and mononuclear material [Fe(L4)2(H2O)4] ⋅ 2H2O ( C7 ), these two zero-dimensional molecules were also synthesized. They all display weak antiferromagnetic exchange coupling and a high spin state in the whole process.  相似文献   

11.
Ab initio calculations have been performed on [FeII(bpy)3]2+ (bpy=bipyridine) to establish the variation of the energy of the electronic states relevant to light‐induced excited‐state spin trapping as a function of the Fe? ligand distance. Light‐induced spin crossover takes place after excitation into the singlet metal‐to‐ligand charge‐transfer (MLCT) band. We found that the corresponding electronic states have their energy minimum in the same region as the low‐spin (LS) state and that the energy dependence of the triplet MLCT states are nearly identical to the 1MLCT states. The high‐spin (HS) state is found to cross the MLCT band near the equilibrium geometry of the MLCT states. These findings give additional support to the hypothesis of a fast singlet–triplet interconversion in the MLCT manifold, followed by a 3MLCT–HS (5T2) conversion accompanied by an elongation of the Fe? N distance.  相似文献   

12.
13.
FeII(Metz)6](FeIIIBr4)2 (Metz=1‐methyltetrazole) is one of the rare systems combining spin‐crossover and long‐range magnetic ordering. A joint neutron and X‐ray diffraction and magnetometry study allows determining its collinear antiferromagnetic structure, and shows an increase of the Néel temperature from 2.4 K at ambient pressure, to 3.9 K at 0.95 GPa. Applied pressure also enables a full high‐spin to low‐spin switch at ambient temperature.  相似文献   

14.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

15.
Three new trinuclear nickel (II) complexes with the general composition [Ni3L3(OH)(X)](ClO4) have been prepared in which X=Cl? ( 1 ), OCN? ( 2 ), or N3? ( 3 ) and HL is the tridentate N,N,O donor Schiff base ligand 2‐[(3‐dimethylaminopropylimino)methyl]phenol. Single‐crystal structural analyses revealed that all three complexes have a similar Ni3 core motif with three different types of bridging, namely phenoxido (μ2 and μ3), hydroxido (μ3), and μ2‐Cl ( 1 ), μ1,1‐NCO ( 2 ), or μ1,1‐N3 ( 3 ). The nickel(II) ions adopt a compressed octahedron geometry. Single‐crystal magnetization measurements on complex 1 revealed that the pseudo‐three‐fold axis of Ni3 corresponds to a magnetic easy axis, being consistent with the magnetic anisotropy expected from the coordination structure of each nickel ion. Temperature‐dependent magnetic measurements indicated ferromagnetic coupling leading to an S=3 ground state with 2J/k=17, 17, and 28 K for 1 , 2 , and 3 , respectively, with the nickel atoms in an approximate equilateral triangle. The high‐frequency EPR spectra in combination with spin Hamiltonian simulations that include zero‐field splitting parameters DNi/k=?5, ?4, and ?4 K for 1 , 2 , and 3 , respectively, reproduced the EPR spectra well after a anisotropic exchange term was introduced. Anisotropic exchange was identified as Di,j/k=?0.9, ?0.8, and ?0.8 K for 1 , 2 , and 3 , respectively, whereas no evidence of single‐ion rhombic anisotropy was observed spectroscopically. Slow relaxation of the magnetization at low temperatures is evident from the frequency‐dependence of the out‐of‐phase ac susceptibilities. Pulsed‐field magnetization recorded at 0.5 K shows clear steps in the hysteresis loop at 0.5–1 T, which has been assigned to quantum tunneling, and is characteristic of single‐molecule magnets.  相似文献   

16.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

17.
The treatment of di‐o‐quinone 4,4′‐(ethane‐1,2‐diyl)‐bis(3,6‐di‐tert‐butyl‐o‐benzoquinone) (Q–CH2–CH2–Q, 1 ) leads to its rearrangement to form di‐p‐quinomethide 4,4′‐(ethane‐1,2‐diylidene)bis(2‐hydroxy‐3,6‐di‐tert‐butyl‐cyclohexa‐2,5‐dienone) ( 2 ). The subsequent oxidation of 2 by an alkaline solution of K3[Fe(CN)6] yielded the new di‐o‐quinone 4,4′‐(ethene‐1,2‐diyl)bis(3,6‐di‐tert‐butyl‐o‐benzoquinone) (Q–CH=CH–Q, 3 ), which contains an ethylene bridge. The formation of mono‐ and poly‐reduced derivatives of 2 and 3 with potassium, thallium was studied by EPR technique. The dinuclear thallium derivative of 3 , Tl(SQ–CH=CH–SQ)Tl, was found to exist in the diamagnetic quinomethide form. The most stable derivatives of 2 and 3 are triphenyltin(IV) bis‐p‐quinomethide‐phenolate ( 4 ) and triphenylantimony(V) bis‐catecholate ( 5 ), which have been synthesized and isolated. The molecular structures of 2 , 3 , and 5 were characterized by single‐crystal X‐ray diffraction.  相似文献   

18.
Different pathways for the preparation of organometallic manganese(IV) corroles with σ‐aryl ligands have been evaluated. The treatment of a manganese(III) corrole with Grignard reagents PhMgX (X = Cl, Br), followed by aerial oxidation yields oxidized halogenido complexes [(cor)MnIVX] instead of the anticipated organometallic compounds. Reaction of these halogenido species, especially the bromido compound, with excess Grignard reagents or with lithium aryls results in the formation of the desired σ‐aryl compounds via salt metatheses. Three examples of this class of rare complexes have been characterized by means of optical and 1H NMR spectroscopy, and in two cases single crystal X‐ray diffraction studies have been carried out. In the crystal, the molecular structures of the σ‐phenyl‐ and the σ‐(p‐bromophenyl) derivatives were observed to be very similar, albeit both species pack in different pattern.  相似文献   

19.
20.
A new type of [2×2] matrix‐like complexes with one vertex devoid of a metal ion has been selectively synthesized. The defect‐grid triiron(II) complex exhibits a sharp and complete spin‐crossover (SCO) from the 1HS‐2LS to the 2HS‐1LS state (HS: high spin; LS: low spin) with wide hysteresis near room temperature. Although the “structurally soft” H‐bonded vertex, elastically coupled to the metal ions, accounts for the stabilization of spin states, it also mediates a dramatic, yet reversible, response to the uptake of exogenous solvent molecules leading to silencing of the SCO. The high sensitivity towards those guest molecules, the short response time upon exposure, and the smooth reversibility of guest binding are favorable characteristics for future sensing applications of such defect grids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号