首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We report on the characterisation of 16 protic ionic liquids (PILs) prepared by neutralisation of primary or tertiary amines with a range of simple carboxylic acids, or salicylic acid. The extent of proton transfer was greater for simple primary amine ILs compared to tertiary amines. For the latter case, proton transfer was increased by providing a better solvation environment for the ions through the addition of a hydroxyl group, either on the tertiary amine, or by formation of PIL/molecular solvent mixtures. The library of PILs was characterised by differential scanning calorimetry and a range of transport properties (i. e. viscosity, conductivity and diffusivity) were measured. Using the (fractional) Walden rule, the conductivity and viscosity results were analysed with respect to their deviation from ideal behaviour. The validity of the Walden plot for PILs containing ions of varying sizes was also verified for a number of samples by directly measuring self-diffusion coefficients using pulsed-field gradient spin-echo (PGSE) NMR. Ionicity was found to decrease as the alkyl chain length and degree of branching of both the cations and anions was increased. These results aim to develop a better understanding of the relationship between PIL properties and structure, to help design ILs with optimal properties for applications.  相似文献   

6.
7.
Ionic liquids (ILs) attract interest in science and technology as a result of their unique properties. Binary and ternary mixtures of ILs significantly increase the number of possible cation/anion combinations, resulting in targeted physical and chemical properties. In this work, we study the mixing behaviour of two protic ILs: triethyl ammonium methylsulfonate [Et3NH][CH3SO3] and triethylammonium triflate [Et3NH][CF3SO3]. We find a characteristic deviation from ideal mixing by means of low‐frequency infrared spectroscopy. By using molecular dynamics simulations, we explain this behaviour as being the result of different strengths of anion/cation hydrogen bonding. This non‐ideality of non‐random H‐bond mixing is also reflected in macroscopic properties such as the viscosity. Mixing suitable ILs may, thus, result in new ILs with targeted physical properties.  相似文献   

8.
Similarities and differences : Far‐infrared spectra of protic ionic liquids could be assigned to intermolecular bending and stretching modes of hydrogen bonds. The characteristics of the low‐frequency spectra resemble those of water. Both liquids form three‐dimensional network structures, but only water is capable of building tetrahedral configurations. EAN: ethylammonium nitrate, PAN: propylammonium nitrate, DMAN: dimethylammonium nitrate.

  相似文献   


9.
We focus on a series of protic ionic liquids (PILs) with imidazolium and alkylimidazolium (1R3HIm, R=methyl, ethyl, propyl, and butyl) cations. Using the literature data and our experimental results on the thermal and transport properties, we analyze the effects of the anion nature and the alkyl radical length in the cation structure on the above properties. DFT calculations in gas and solvent phase provide further microscopic insights into the structure and cation-anion binding in these PILs. We show that the higher thermodynamic stability of an ion pair raises the PIL decomposition temperature. The melting points of the salts with the same cation decrease as the hydrocarbon radical in the cation becomes longer, which correlates with the weaker ion-ion interaction inthe ion pairs. A comparative analysis of the protic ILs and corresponding ILs (1R3MeIm) with the same radical (R) in the cation structure and the same anion has been performed. The lower melting points of the ILs with 1R3MeIm cations are assumed to result from the weakening of both the ion-ion interaction and the hydrogen bond.  相似文献   

10.
11.
Fast field cycling nuclear magnetic resonance (FFC NMR) relaxometry technique has been demonstrated to be a useful analytical tool to investigate molecular dynamics in very diverse systems during the last decades. Of particular importance has been its application in studying ionic liquids, upon which this review article is based. Some of the research carried out on ionic liquids during the last ten years using this technique is highlighted in this article with the aim of promoting the favorable features of FFC NMR applied toward understanding dynamics of complex systems.  相似文献   

12.
Herein, we show the feasibility of using deep eutectic solvents as a faster way of selecting aptamers targeting poorly water‐soluble species. This unexplored concept is illustrated for gluten proteins. In this way, aptamer‐based gluten detection can be performed directly in the extraction media with improved detectability. We envision deep implications for applications not only in food safety control but also in biomedicine.  相似文献   

13.
A theoretical-computational procedure based on the quasi-Gaussian entropy (QGE) theory and molecular dynamics (MD) simulations is proposed for the calculation of thermodynamic properties for molecular and supra-molecular species in the gas phase. The peculiarity of the methodology reported in this study is its ability to construct an analytical model of all the most relevant thermodynamic properties, even within a wide temperature range, based on a practically automatic sampling of the entire conformational repertoire of highly flexible systems, thereby bypassing the need for an explicit search for all possible conformers/rotamers deemed relevant. In this respect, the reliability of the presented method mainly depends on the quality of the force field used in the MD simulations and on the ability to discriminate in a physically coherent way between semi-classical and quantum degrees of freedom. The method was tested on six model systems (n-butane, n-butane, n-octanol, octadecane, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic pairs), which, being experimentally characterized and already addressed by other theoretical-computational methods, were considered as particularly suitable to allow us to evaluate the method’s accuracy and efficiency, bringing out advantages and possible drawbacks. The results demonstrate that such a physically coherent yet relatively simple method can represent a further valid computational tool that is alternative and complementary to other extremely efficient computational methods, as it is particularly suited for addressing the thermodynamics of gaseous systems with a high conformational complexity over a large range of temperature.  相似文献   

14.
15.
Electrical conductivity (σ), viscosity (η), and self‐diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium‐based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmIm][BF4], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the 1H NMR chemical shifts of the ionic liquids. The self‐diffusion coefficients D of the cation and anion of [HmIm][CH3COO] in D2O and in [D6]DMSO are determined by using 1H nuclei with pulsed field gradient spin‐echo NMR spectroscopy.  相似文献   

16.
离子液体作为潜在的“绿色”溶剂,具有许多传统溶剂无法比拟的优异性能,在有机合成、催化、液液分离和萃取等领域引起了广泛的研究。而在离子液体领域无机材料的制备是一个较新的发展分支,现已利用其合成出多种具有独特结构和性能的无机材料。本文就离子液体在无机材料制备方面的应用及发展趋势进行了综述。目前,对于制备无机材料,离子液体主要是作为电解液、表面活性剂或溶剂,本文介绍了其在应用中的优缺点,并指出该领域未来的发展趋势是离子热合成和集模板-溶剂-反应物于一身的离子液体反应。  相似文献   

17.
功能化离子液体的制备及其在合成中的应用   总被引:2,自引:1,他引:2  
功能化离子液体;手性离子液体;酸性离子液体  相似文献   

18.
Carbon materials (CMs) hold immense potential for applications across a wide range of fields. However, current precursors often confront limitations such as low heteroatom content, poor solubility, or complicated preparation and post-treatment procedures. Our research has unveiled that protic ionic liquids and salts (PILs/PSs), generated from the neutralization of organic bases with protonic acids, can function as economical and versatile small-molecule carbon precursors. The resultant CMs display attractive features, including elevated carbon yield, heightened nitrogen content, improved graphitic structure, robust thermal stability against oxidation, and superior conductivity, even surpassing that of graphite. These properties can be elaborate modulated by varying the molecular structure of PILs/PSs. In this Personal Account, we summarize recent developments in PILs/PSs-derived CMs, with a particular focus on the correlations between precursor structure and the physicochemical properties of CMs. We aim to impart insights into the foreseeable controlled synthesis of advanced CMs.  相似文献   

19.
Human neutrophil elastase (HNE) is used as diagnostic biomarker for inflammation/infection. In this work, 10 ionic liquids (ILs) and 11 ionic liquids active pharmaceutical ingredients (ILs-APIs) were tested to evaluate the inhibition effect on the activity of porcine pancreatic elastase enzyme, frequently employed as a model for HNE. The insertion of ionic liquids in some drugs is useful, as the insertion of ILs with inhibitory capacity will also slow down all processes in which this enzyme is involved. Therefore, a spectrophotometric method was performed to the determination of EC50 values of the compounds tested. EC50 values of 124 ± 4 mM to 289 ± 11 mM were obtained, with the most toxic IL for elastase being tetrabutylammonium acetate and the least toxic 1-butyl-3-methylimidazolium acetate. Moreover, sodium salicylate (raw material) presented the lower and benzethonium bistriflimide the higher EC50 when compared with all the IL-APIs tested. This work provides significant information about the effect of the studied IL and IL-APIs in elastase enzyme activity.  相似文献   

20.
In recent years, great progress has been made in the dissolution of cellulose with ionic liquids (ILs). However, the mechanism of cellulose dissolution, especially the role the IL cation played in the dissolution process, has not been clearly understood. Herein, the mixtures of cellulose with a series of imidazolium‐based chloride ionic liquids and 1‐butyl‐3‐methyl pyridinium chloride ([C4mpy]Cl) were simulated to study the effect that varying the heterocyclic structure and alkyl chain length of the IL cation has on the dissolution of cellulose. It was shown that the dissolution of cellulose in [C4mpy]Cl is better than that in [C4mim]Cl. For imidazolium‐based ILs, the shorter the alkyl chain is, the higher the solubility will be. In addition, an all‐atom force field for 1‐allyl‐3‐methyl imidazolium cation ([Amim]+) was developed, for the first time, to investigate the effect the electron‐withdrawing group within the alkyl chain of the IL cation has on the dissolution of cellulose. It was found that the interaction energy between [Amim]+ and cellulose was greater than that between [C3mim]+ and cellulose, indicating that the presence of electron‐withdrawing group in alkyl chain of the cation enhanced the interaction between the cation and cellulose due to the increase of electronegativity of the cations. These findings are used to assess the cationic effect on the dissolution of cellulose in ILs. They are also expected to be important for rational design of novel ILs for efficient dissolution of cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号