首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An efficient catalytic system for the alkylation of amines with either alcohols or amines under mild conditions has been developed, using cyclometallated iridium complexes as catalysts. The method has broad substrate scope, allowing for the synthesis of a diverse range of secondary and tertiary amines with good to excellent yields. By controlling the ratio of substrates, both mono‐ and bis‐alkylated amines can be obtained with high selectivity. In particular, methanol can be used as the alkylating reagent, affording N‐methylated products selectively. A strong solvent effect is observed for the reaction.  相似文献   

2.
The N‐alkylation of amines or ammonia with alcohols is a valuable route for the synthesis of N‐alkyl amines. However, as a potentially clean and economic choice for N‐alkyl amine synthesis, non‐noble metal catalysts with high activity and good selectivity are rarely reported. Normally, they are severely limited due to low activity and poor generality. Herein, a simple NiCuFeOx catalyst was designed and prepared for the N‐alkylation of ammonia or amines with alcohol or primary amines. N‐alkyl amines with various structures were successfully synthesized in moderate to excellent yields in the absence of organic ligands and bases. Typically, primary amines could be efficiently transformed into secondary amines and N‐heterocyclic compounds, and secondary amines could be N‐alkylated to synthesize tertiary amines. Note that primary and secondary amines could be produced through a one‐pot reaction of ammonia and alcohols. In addition to excellent catalytic performance, the catalyst itself possesses outstanding superiority, that is, it is air and moisture stable. Moreover, the magnetic property of this catalyst makes it easily separable from the reaction mixture and it could be recovered and reused for several runs without obvious deactivation.  相似文献   

3.
New reactions that convert alcohols into important classes of compounds are becoming increasingly important as their development contributes to the conservation of our fossil carbon feedstock and the reduction of CO2 emissions. Two key catalytic alcohol conversion concepts are borrowing hydrogen or hydrogen autotransfer and acceptorless dehydrogenative condensation. Herein, we combined both concepts to synthesize meta ‐functionalized pyridines. First, diols and amines were linked to β‐amino alcohols, which can then undergo a selective dehydrogenative heterocondensation with γ‐amino alcohols. Iridium catalysts stabilized by PN5P pincer ligands that were developed in our laboratory mediate the reactions most efficiently. All of the 3‐aminopyridines that we describe in this paper have been synthesized for the first time, emphasizing the degree of innovation of this method and the problems associated with the synthesis of such meta ‐functionalized pyridines.  相似文献   

4.
Possibly because homogeneous palladium catalysts are not typical borrowing hydrogen catalysts and ligands are thus ineffective in catalyst activation under conventional anaerobic conditions, they had not been used in the N‐alkylation reactions of amines/amides with alcohols in the past. By employing the aerobic relay race methodology with Pd‐catalyzed aerobic alcohol oxidation being a more effective protocol for alcohol activation, ligand‐free homogeneous palladiums are successfully used as active catalysts in the dehydrative N‐alkylation reactions, giving high yields and selectivities of the alkylated amides and amines. Mechanistic studies implied that the reaction most probably proceeds via the novel relay race mechanism we recently discovered and proposed.  相似文献   

5.
The efficient and selective formal total synthesis of aliskiren is described. Aliskiren, a renin inhibitor drug, has received considerable attention, primarily because it is the first of the renin inhibitor drugs to be approved by the FDA. Herein, the formal synthesis of aliskiren by iridium‐catalyzed asymmetric hydrogenation of two allylic alcohol fragments is reported. Screening a number of N,P‐ligated iridium catalysts yielded two catalysts that gave the highest enantioselectivity in the hydrogenation, which gave the saturated alcohols in 97 and 93 % ee. In only four steps after hydrogenation, the fragments were combined by using the Julia–Kocienski reaction to produce late‐stage intermediate in an overall yield of 18 %.  相似文献   

6.
Covalent attachment of a 1,2,4-triazole iridium complex to mesoporous MCM-41 generated a heterogeneous catalyst that was found to be effective in the synthesis of 2-aryl isoindolines, quinolines, cyclic amines, and symmetrical secondary amines through a cascade borrowing hydrogen strategy. Interestingly, the supported heterogeneous iridium catalyst prepared from the 1,2,4-triazole iridium complex and mesoporous MCM-41 exhibited high catalytic activity in the preparation of 2-aryl isoindoline derivatives and symmetrical secondary amines. The catalyst system is highly recyclable for at least five times. Besides the important effect of the triazole, iridium sites grafted on siliceous supports can act as multifunctional catalytic centers and thus greatly enhance the catalytic activity of the catalysts. Furthermore, mechanistic experiments revealed that the reaction is initiated by an initial alcohol dehydrogenation and promoted by an iridium hydride intermediate. Importantly, the direct detection of a diagnostic iridium hydride signal confirmed that the synthesis of 2-aryl isoindolines occurs by a borrowing hydrogen process. This work provides an efficient example of isoindolines synthesis through a borrowing hydrogen strategy.  相似文献   

7.
A practical method for the synthesis of α‐chiral amines by alkylation of amines with alcohols in the absence of any transition‐metal catalysts has been developed. Under the co‐catalysis of a ketone and NaOH, racemic secondary alcohols reacted with Ellman's chiral tert‐butanesulfinamide by a hydrogen autotransfer process to afford chiral amines with high diastereoselectivities (up to >99:1). Broad substrate scope and up to a 10 gram scale production of chiral amines were demonstrated. The method was applied to the synthesis of chiral deuterium‐labelled amines with high deuterium incorporation and optical purity, including examples of chiral deuterated drugs. The configuration of amine products is found to be determined solely by the configuration of the chiral tert‐butanesulfinamide regardless of that of alcohols, and this is corroborated by DFT calculations. Further mechanistic studies showed that the reaction is initiated by the ketone catalyst and involves a transition state similar to that proposed for the Meerwein–Ponndorf–Verley (MPV) reduction, and importantly, it is the interaction of the sodium cation of the base with both the nitrogen and oxygen atoms of the sulfinamide moiety that makes feasible, and determines the diastereoselectivity of, the reaction.  相似文献   

8.
Cyclometalated iridium complexes are found to be versatile catalysts for the direct reductive amination (DRA) of carbonyls to give primary amines under transfer‐hydrogenation conditions with ammonium formate as both the nitrogen and hydrogen source. These complexes are easy to synthesise and their ligands can be easily tuned. The activity and chemoselectivity of the catalyst towards primary amines is excellent, with a substrate to catalyst ratio (S/C) of 1000 being feasible. Both aromatic and aliphatic primary amines were obtained in high yields. Moreover, a first example of homogeneously catalysed transfer‐hydrogenative DRA has been realised for β‐keto ethers, leading to the corresponding β‐amino ethers. In addition, non‐natural α‐amino acids could also be obtained in excellent yields with this method.  相似文献   

9.
The iridium complexes of chiral spiro aminophophine ligands, especially the ligand with 3,5‐di‐tert‐butylphenyl groups on the P atom ( 1c ) were demonstrated to be highly efficient catalysts for the asymmetric hydrogenation of alkyl aryl ketones. In the presence of KOtBu as a base and under mild reaction conditions, a series of chiral alcohols were synthesized in up to 97 % ee with high turnover number (TON up to 10 000) and high turnover frequency (TOF up to 3.7×104 h−1). Investigation on the structures of the iridium complexes of ligands (R)‐ 1a and 1c by X‐ray analyses disclosed that the 3,5‐di‐tert‐butyl groups on the P‐phenyl rings of the ligand are the key factor for achieving high activity and enantioselectivity of the catalyst. Study of the catalysts generated from the Ir‐(R)‐ 1c complex and H2 by means of ESI‐MS and NMR spectroscopy indicated that the early formed iridium dihydride complex with one (R)‐ 1c ligand was the active species, which was slowly transformed into an inactive iridium dihydride complex with two (R)‐ 1c ligands. A plausible mechanism for the reaction was also suggested to explain the observations of the hydrogenation reactions.  相似文献   

10.
The catalytic asymmetric reduction of ketimines has been explored extensively for the synthesis of chiral amines, with reductants ranging from Hantzsch esters, silanes, and formic acid to H2 gas. Alternatively, the amination of alcohols by the use of borrowing hydrogen methodology has proven a highly atom economical and green method for the production of amines without an external reductant, as the alcohol substrate serves as the H2 donor. A catalytic enantioselective variant of this process for the synthesis of chiral amines, however, was not known. We have examined various transition‐metal complexes supported by chiral ligands known for asymmetric hydrogenation reactions, in combination with chiral Brønsted acids, which proved essential for the formation of the imine intermediate and the transfer‐hydrogenation step. Our studies led to an asymmetric amination of alcohols to provide access to a wide range of chiral amines with good to excellent enantioselectivity.  相似文献   

11.
A new class of efficient catalysts was developed for the asymmetric transfer hydrogenation of unsymmetrical ketones. A series of chiral N,S-chelates (6-22) was synthesized to serve as ligands in the iridium(I)-catalyzed reduction of ketones. Both formic acid and 2-propanol proved to be suitable as hydrogen donors. Sulfoxidation of an (R)-cysteine-based aminosulfide provided a diastereomeric ligand family containing a chiral sulfur atom. The two chiral centers of these ligands showed a clear effect of chiral cooperativity. In addition, aminosulfides containing two asymmetric carbon atoms in the backbone were synthesized. Both the sulfoxide-containing beta-amino alcohols and the aminosulfides derived from 1,2-disubstituted amino alcohols gave rise to high reaction rates and moderate to excellent enantioselectivities in the reduction of various ketones. The enantioselective outcome of the reaction was favorably affected by selecting the most appropriate hydrogen donor. Enantioselectivities of up to 97% were reached in the reduction of aryl-alkyl ketones.  相似文献   

12.
The common use of NHC complexes in transition‐metal mediated C–C coupling and metathesis reactions in recent decades has established N‐heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC‐containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of complexes with chiral, chelating bis(NHC) ligands are rare. In the present work new chiral iridium(I) bis(NHC) complexes and their application in the asymmetric transfer hydrogenation of ketones are described. A series of chiral bis(azolium) salts have been prepared following a synthetic pathway, starting from L ‐valinol and the modular buildup allows the structural variation of the ligand precursors. The iridium complexes were formed via a one‐pot transmetallation procedure. The prepared complexes were applied as catalysts in the asymmetric transfer hydrogenation of various prochiral ketones, affording the corresponding chiral alcohols in high yields and moderate to good enantioselectivities of up to 68%. The enantioselectivities of the catalysts were strongly affected by the various, terminal N‐substituents of the chelating bis(NHC) ligands. The results presented in this work indicate the potential of bis‐carbenes as stereodirecting ligands for asymmetric catalysis and are offering a base for further developments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The synthesis of eight new iridium complexes containing anionic P,N ligands is described. These complexes have been investigated as catalysts for amine alkylation reactions, resulting in a highly active catalyst for the selective monoalkylation of anilines with primary alcohols, under mild reaction conditions. Nearly quantitative conversion was observed at 70 °C with a catalyst loading as low as 0.05 mol% iridium.  相似文献   

14.
Transition metal catalyzed oxidative amide synthesis directly from primary alcohols and amines is a highly atom economical transformation that evolves hydrogen gas as the only by-product. Several Ru-, Rh-based homogeneous and Ag-based heterogeneous catalysts have been developed for direct amide synthesis. Most of the developed catalysts showed excellent activity with sterically unhindered alcohols and amines; however, limited activity was observed with sterically hindered alcohols or amines, less basic aryl amines, and secondary amines. This account provides an overview of recent advances and challenges in direct amide synthesis.  相似文献   

15.
Described herein are two different methods for the synthesis of vinyl halides by a shuttle catalysis based iridium‐catalyzed transfer hydrohalogenation of unactivated alkynes. The use of 4‐chlorobutan‐2‐one or tert‐butyl halide as donors of hydrogen halides allows this transformation in the absence of corrosive reagents, such as hydrogen halides or acid chlorides, thus largely improving the functional‐group tolerance and safety profile of these reactions compared to the state‐of‐the‐art. This method has granted access to alkenyl halide compounds containing acid‐sensitive groups, such as tertiary alcohols, silyl ethers, and acetals. The synthetic value of those methodologies has been demonstrated by gram‐scale synthesis where low catalyst loading was achieved.  相似文献   

16.
Octahedral iridium(III) complexes containing two bidentate cyclometalating 5‐tert‐butyl‐2‐phenylbenzoxazole ( IrO ) or 5‐tert‐butyl‐2‐phenylbenzothiazole ( IrS ) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5–5.0 mol % catalyst loading) for a variety of reactions with α,β‐unsaturated carbonyl compounds, namely Friedel–Crafts alkylations (94–99 % ee), Michael additions with CH‐acidic compounds (81–97 % ee), and a variety of cycloadditions (92–99 % ee with high d.r.). Mechanistic investigations and crystal structures of an iridium‐coordinated substrates and iridium‐coordinated products are consistent with a mechanistic picture in which the α,β‐unsaturated carbonyl compounds are activated by two‐point binding (bidentate coordination) to the chiral Lewis acid.  相似文献   

17.
《中国化学》2017,35(9):1371-1377
Heterogeneous iridium catalysts were prepared and applied for the reductive amination of aldehydes and ketones with nitroaromatics and amines using H2 . The iridium catalysts were prepared by pyrolysis of ionic liquid 1‐methyl‐3‐cyanomethylimidazoulium chloride ([MCNI ]Cl) with iridium chloride (IrCl3 ) in activated carbons. Iridium particles were well dispersed and stable in the N‐doped carbon materials from [MCNI ]Cl with activated carbon. The Ir@NC (600‐2h) catalyst was found to be highly active and selective for the reductive amination of aldehydes and ketones using H2 and a variety of nitrobenzenes and amines were selectively converted into the corresponding secondary and tertiary amines. The Ir@NC (600‐2h) catalyst can be reusable several times without evident deactivation.  相似文献   

18.
Enantiomerically pure iridium complexes with phosphino‐ and (phosphinooxy)‐substituted N‐heterocyclic carbene (NHC) ligands were synthesized. Investigation of their electronic properties showed a similar trans influence of the phosphino (or phosphinooxy) and the NHC units. The complexes were tested in iridium‐catalyzed hydrogenation. While low conversions were observed with unfunctionalized olefins, the catalysts proved to be suitable for hydrogenation of the α,β‐unsaturated ester 20 , allylic alcohol 21 , and imine 22 . The enantioselectivities were, however, moderate.  相似文献   

19.
Chiral rhodium(III) complexes containing two cyclometalating 2‐phenyl‐5,6‐(S,S)‐pinenopyridine ligands and two additional acetonitriles are introduced as excellent catalysts for the highly enantioselective alkynylation of 2‐trifluoroacetyl imidazoles. Whereas the ligand‐based chirality permits the straightforward synthesis of the complexes in a diastereomerically and enantiomerically pure fashion, the metal‐centered chirality is responsible for the asymmetric induction over the course of the catalysis. For comparison, the analogous iridium congeners provide only low enantioselectivity, and previously reported benzoxazole‐ and benzothiazole‐based catalysts do not show any catalytic activity for this reaction under standard reaction conditions.  相似文献   

20.
Allylic amines are useful building blocks in organic synthesis, so the development of green and efficient methods for the preparation of allylic amines are of great importance. An Fe-catalyzed amidation of allylic alcohols with chiral tert-butylsulfinamide has been developed. With water as the only by-product, a range of synthetically useful chiral sulfinamide olefin derivatives (30 examples) were obtained under mild reaction conditions. The reaction can be performed on a gram-scale, and the products could serve as chiral ligands for asymmetric catalysis. Mechanistic studies suggest that the reaction proceeds by an Fe-catalyzed borrowing hydrogen process, which is different from most of the reported allylic amination reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号