共查询到20条相似文献,搜索用时 12 毫秒
1.
Dr. Weiqi Wang Dr. Lei Wang Prof. Yubin Huang Prof. Zhigang Xie Prof. Xiabin Jing 《化学:亚洲杂志》2016,11(5):750-756
A metal–organic framework (MOF)–protein conjugate, NH2‐MIL‐125(Ti)‐hemoglobin [MIL‐125(Ti)‐Hb], was synthesized by a covalent postmodification strategy. The crystalline structure was maintained after chemical and protein modification. The content of grafted Hb was tuned by the stoichiometric ratio and reached 50 wt % if the mass ratio of MIL‐125(Ti)/Hb was 1:1.25 in the feed. The oxygen‐transporting capacity of grafted Hb was kept, and the P50 (the half O2 pressure saturated with O2) and Hill coefficients of the MIL‐125(Ti)‐Hb conjugate were found to be 22.9 mm Hg and 2.35, respectively, which are close to the respective values of free Hb. All the results indicate that the MIL‐125(Ti)‐Hb conjugate could be potentially used as an oxygen carrier. 相似文献
2.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective. 相似文献
3.
Metal–Organic‐Framework‐Templated Polyelectrolyte Nanocapsules for the Encapsulation and Delivery of Small‐Molecule–Polymer Conjugates 下载免费PDF全文
Shuo Liu Jianbin Chen Xiaojia Bao Tao Li Yunyang Ling Chunxiang Li Prof. Dr. Chuanliu Wu Prof. Dr. Yibing Zhao 《化学:亚洲杂志》2016,11(12):1811-1820
Herein, we report a strategy for exploiting nanoscale metal–organic frameworks (nano‐MOFs) as templates for the layer‐by‐layer (LbL) assembly of polyelectrolytes. Because small‐molecule drugs or imaging agents cannot be efficiently encapsulated by polyelectrolyte nanocapsules, we investigated two promising and biocompatible polymers (comb‐shaped polyethylene glycol (PEG) and hyperbranched polyglycerol‐based PEG) for the conjugation of model drugs and imaging agents, which were then encapsulated inside the nano‐MOF‐templated nanocapsules. Furthermore, we also systemically explored the release kinetics of the encapsulated conjugates, and examined how the encapsulation and/or release processes could be controlled by varying the composition and architecture of the polymers. We envision that our nano‐MOFs‐templated nanocapsules, through combining with small‐molecule–polymer conjugates, will represent a new type of delivery system that could open up new opportunities for biomedical applications. 相似文献
4.
Yonghwi Kim Dr. Sunirban Das Saurav Bhattacharya Soonsang Hong Dr. Min Gyu Kim Dr. Minyoung Yoon Prof. Dr. Srinivasan Natarajan Prof. Dr. Kimoon Kim 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(52):16642-16648
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65. 相似文献
5.
Chao Liu Jing Wang Jingjing Wan Yan Cheng Rong Huang Chaoqi Zhang Wenli Hu Guangfeng Wei Chengzhong Yu 《Angewandte Chemie (International ed. in English)》2020,59(9):3630-3637
Amorphous metal–organic frameworks (aMOFs) are an emerging family of attractive materials with great application potential, however aMOFs are usually prepared under harsh conditions and aMOFs with complex compositions and structures are rarely reported. In this work, an aMOF‐dominated nanocomposite (aMOF‐NC) with both structural and compositional complexity has been synthesized using a facile approach. A ligand‐competition amorphization mechanism is proposed based on experimental and density functional theory calculation results. The aMOF‐NC possesses a core–shell nanorod@nanosheet architecture, including a Fe‐rich Fe‐Co‐aMOF core and a Co‐rich Fe‐Co‐aMOF shell in the core–shell structured nanorod, and amorphous Co(OH)2 nanosheets as the outer layer. Benefiting from the structural and compositional heterogeneity, the aMOF‐NC demonstrates an excellent oxygen evolution reaction activity with a low overpotential of 249 mV at 10.0 mA cm?2 and Tafel slope of 39.5 mV dec?1. 相似文献
6.
Dr. Andre Sutrisno Dr. Victor V. Terskikh Qi Shi Zhengwei Song Prof. Jinxiang Dong San Yuan Ding Prof. Wei Wang Bianca R. Provost Dr. Thomas D. Daff Prof. Tom K. Woo Prof. Yining Huang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(39):12251-12259
Metal–organic frameworks (MOFs) are an extremely important class of porous materials with many applications. The metal centers in many important MOFs are zinc cations. However, their Zn environments have not been characterized directly by 67Zn solid‐state NMR (SSNMR) spectroscopy. This is because 67Zn (I=5/2) is unreceptive with many unfavorable NMR characteristics, leading to very low sensitivity. In this work, we report, for the first time, a 67Zn natural abundance SSNMR spectroscopic study of several representative zeolitic imidazolate frameworks (ZIFs) and MOFs at an ultrahigh magnetic field of 21.1 T. Our work demonstrates that 67Zn magic‐angle spinning (MAS) NMR spectra are highly sensitive to the local Zn environment and can differentiate non‐equivalent Zn sites. The 67Zn NMR parameters can be predicted by theoretical calculations. Through the study of MOF‐5 desolvation, we show that with the aid of computational modeling, 67Zn NMR spectroscopy can provide valuable structural information on the MOF systems with structures that are not well described. Using ZIF‐8 as an example, we further demonstrate that 67Zn NMR spectroscopy is highly sensitive to the guest molecules present inside the cavities. Our work also shows that a combination of 67Zn NMR data and molecular dynamics simulation can reveal detailed information on the distribution and the dynamics of the guest species. The present work establishes 67Zn SSNMR spectroscopy as a new tool complementary to X‐ray diffraction for solving outstanding structural problems and for determining the structures of many new MOFs yet to come. 相似文献
7.
Metal–Organic Framework‐Derived Copper Nanoparticle@Carbon Nanocomposites as Peroxidase Mimics for Colorimetric Sensing of Ascorbic Acid 下载免费PDF全文
Dr. Hongliang Tan Chanjiao Ma Li Gao Qian Li Prof. Yonghai Song Dr. Fugang Xu Prof. Tao Wang Prof. Li Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(49):16377-16383
Metal–organic frameworks (MOFs) have emerged as very fascinating functional materials due to their diversity nature. A nanocomposite consisting of copper nanoparticles dispersed within a carbon matrix (Cu NPs@C) is prepared through a one‐pot thermolysis of copper‐based metal–organic framework precursors. Cu NPs@C can catalyze the oxidation of 3,3′,5,5′‐tetramethylbenzidine (TMB) to form a colored product in the presence of H2O2. As a peroxidase mimic, Cu NPs@C not only has the advantages of low cost, high stability, and easy preparation, but also follows Michaelis–Menten behaviors and shows strong affinity to H2O2. As the Cu NPs’ surfaces are free from stabilizing agent, Cu NPs@C exhibited a higher affinity to H2O2 than horseradish peroxidase. On the basis of the inhibitory effect of ascorbic acid (AA) on oxidation of TMB, this system serves as a colorimetric method for the detection of AA, suggesting that the present work would expand the potential applications of MOF‐derived nanocomposites in biomedical fields. 相似文献
8.
Alcohol‐Mediated Resistance‐Switching Behavior in Metal–Organic Framework‐Based Electronic Devices 下载免费PDF全文
Dr. Yaqing Liu Dr. Hong Wang Dr. Wenxiong Shi Dr. Weina Zhang Dr. Jiancan Yu Bevita K. Chandran Chenlong Cui Bowen Zhu Zhiyuan Liu Dr. Bin Li Cai Xu Zhiling Xu Prof. Shuzhou Li Prof. Wei Huang Prof. Fengwei Huo Prof. Xiaodong Chen 《Angewandte Chemie (International ed. in English)》2016,55(31):8884-8888
Metal‐organic frameworks (MOFs) have drawn increasing attentions as promising candidates for functional devices. Herein, we present MOF films in constructing memory devices with alcohol mediated resistance switching property, where the resistance state is controlled by applying alcohol vapors to achieve multilevel information storage. The ordered packing mode and the hydrogen bonding system of the guest molecules adsorbed in MOF crystals are shown to be the reason for the alcohol mediated electrical switching. This chemically mediated memory device can be a candidate in achieving environment‐responsive devices and exhibits potential applications in wearable information storage systems. 相似文献
9.
Eleftheria Neofotistou Christos D. Malliakas Dr. Pantelis N. Trikalitis Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(18):4523-4527
Gas storage : A new, sulfone‐functionalized dicarboxylate‐based ligand (see figure) is capable of directing the formation of novel metal–organic frameworks with unprecedented organic and inorganic secondary building units. A high CO2 uptake with remarkable selectivity over CH4, N2, and H2 was observed at near‐ambient temperature.
10.
Daniel Josef Bell Monika Wiese Ariel Augusto Schnberger Matthias Wessling 《Angewandte Chemie (International ed. in English)》2020,59(37):16047-16053
Metal–organic frameworks (MOFs) are suitable enzyme immobilization matrices. Reported here is the in situ biomineralization of glucose oxidase (GOD) into MOF crystals (ZIF‐8) by interfacial crystallization. This method is effective for the selective coating of porous polyethersulfone microfiltration hollow fibers on the shell side in a straightforward one‐step process. MOF layers with a thickness of 8 μm were synthesized, and fluorescence microscopy and a colorimetric protein assay revealed the successful inclusion of GOD into the ZIF‐8 layer with an enzyme concentration of 29±3 μg cm?2. Enzymatic activity tests revealed that 50 % of the enzyme activity is preserved. Continuous enzymatic reactions, by the permeation of β‐d ‐glucose through the GOD@ZIF‐8 membranes, showed a 50 % increased activity compared to batch experiments, emphasizing the importance of the convective transport of educts and products to and from the enzymatic active centers. 相似文献
11.
Flexible,Luminescent Metal–Organic Frameworks Showing Synergistic Solid‐Solution Effects on Porosity and Sensitivity 下载免费PDF全文
Si‐Yang Liu Dr. Dong‐Dong Zhou Dr. Chun‐Ting He Dr. Pei‐Qin Liao Dr. Xiao‐Ning Cheng Yan‐Tong Xu Jia‐Wen Ye Prof. Dr. Jie‐Peng Zhang Prof. Dr. Xiao‐Ming Chen 《Angewandte Chemie (International ed. in English)》2016,55(52):16021-16025
Mixing molecular building blocks in the solid solution manner is a valuable strategy to obtain structures and properties in between the isostructural parent metal–organic frameworks (MOFs). We report nonlinear/synergistic solid‐solution effects using highly related yet non‐isostructural, phosphorescent CuI triazolate frameworks as parent phases. Near the phase boundaries associated with conformational diversity and ligand heterogeneity, the porosity (+150 %) and optical O2 sensitivity (410 times, limit of detection 0.07 ppm) can be drastically improved from the best‐performing parent MOFs and even exceeds the records hold by precious‐metal complexes (3 ppm) and C70 (0.2 ppm). 相似文献
12.
13.
Pressure‐Induced Bond Rearrangement and Reversible Phase Transformation in a Metal–Organic Framework 下载免费PDF全文
Dr. Elinor C. Spencer Dr. Mangalampalli S. R. N. Kiran Dr. Wei Li Prof. Upadrasta Ramamurty Prof. Nancy L. Ross Prof. Anthony K. Cheetham 《Angewandte Chemie (International ed. in English)》2014,53(22):5583-5586
Pressure‐induced phase transformations (PIPTs) occur in a wide range of materials. In general, the bonding characteristics, before and after the PIPT, remain invariant in most materials, and the bond rearrangement is usually irreversible due to the strain induced under pressure. A reversible PIPT associated with a substantial bond rearrangement has been found in a metal–organic framework material, namely [tmenH2][Er(HCOO)4]2 (tmenH22+=N,N,N′,N′‐tetramethylethylenediammonium). The transition is first‐order and is accompanied by a unit cell volume change of about 10 %. High‐pressure single‐crystal X‐ray diffraction studies reveal the complex bond rearrangement through the transition. The reversible nature of the transition is confirmed by means of independent nanoindentation measurements on single crystals. 相似文献
14.
Yuwen Li Mengting Lu Panpan He Yuhang Wu Jiawen Wang Danni Chen Hui Xu Junkuo Gao Juming Yao 《化学:亚洲杂志》2019,14(9):1590-1594
Non‐noble metal‐based metal–organic framework (MOF)‐derived electrocatalysts have recently attracted great interest in the oxygen evolution reaction (OER). Here we report a facile synthesis of nickel‐based bimetallic electrocatalysts derived from 2D nanosheet‐assembled nanoflower‐like MOFs. The optimized morphologies and large Brunauer–Emmett–Teller (BET) surface area endow FeNi@CNF with efficient OER performance, where the aligned nanosheets can expose abundant active sites and benefit electron transfer. The complex nanoflower morphologies together with the synergistic effects between two metals attributed to the OER activity of the Ni‐based bimetallic catalysts. The optimized FeNi@CNF afforded an overpotential of 356 mV at a current density of 10 mA cm?2 with a Tafel slope of 62.6 mV dec?1, and also exhibited superior durability with only slightly degradation after 24 hours of continuous operation. The results may inspire the use of complex nanosheet‐assembled nanostructures to explore highly active catalysts for various applications. 相似文献
15.
Michael S. Denny Jr. Prof. Dr. Seth M. Cohen 《Angewandte Chemie (International ed. in English)》2015,54(31):9029-9032
Processable films of metal–organic frameworks (MOFs) have been long sought to advance the application of MOFs in various technologies from separations to catalysis. Herein, MOF–polymer mixed‐matrix membranes (MMMs) are described, formed on several substrates using a wide variety of MOF materials. These MMMs can be delaminated from their substrates to create free‐standing MMMs that are mechanically stable and pliable. The MOFs in these MMMs remain highly crystalline, porous, and accessible for further chemical modification through postsynthetic modification (PSM) and postsynthetic exchange (PSE) processes. Overall, the findings here demonstrate a versatile approach to preparing stable functional MMMs that should contribute significantly to the advancement of these materials. 相似文献
16.
Gang Huang Li Yang Xiao Ma Prof. Dr. Jun Jiang Prof. Dr. Shu‐Hong Yu Prof. Dr. Hai‐Long Jiang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(10):3470-3477
Metal‐free catalysts are of great importance and alternative candidates to conventional metal‐based catalysts for many reactions. Herein, several types of metal–organic frameworks have been exploited as templates/precursors to afford porous carbon materials with various nitrogen dopant forms and contents, degrees of graphitization, porosities, and surface areas. Amongst these materials, the PCN‐224‐templated porous carbon material optimized by pyrolysis at 700 °C (denoted as PCN‐224‐700) is composed of amorphous carbon coated with well‐defined graphene layers, offering a high surface area, hierarchical pores, and high nitrogen content (mainly, pyrrolic nitrogen species). Remarkably, as a metal‐free catalyst, PCN‐224‐700 exhibits a low activation energy and superior activity to most metallic catalysts in the catalytic reduction of 4‐nitrophenol to 4‐aminophenol. Theoretical investigations suggest that the content and type of the nitrogen dopant play crucial roles in determining the catalytic performance and that the pyrrolic nitrogen species makes the dominant contribution to this activity, which explains the excellent efficiency of the PCN‐224‐700 catalyst well. 相似文献
17.
18.
Dr. Jared B. DeCoste Dr. Mitchell H. Weston Patrick E. Fuller Trenton M. Tovar Gregory W. Peterson Dr. M. Douglas LeVan Dr. Omar K. Farha 《Angewandte Chemie (International ed. in English)》2014,53(51):14092-14095
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications. 相似文献
19.
Selective and Sensitive Aqueous‐Phase Detection of 2,4,6‐Trinitrophenol (TNP) by an Amine‐Functionalized Metal–Organic Framework 下载免费PDF全文
Biplab Joarder Aamod V. Desai Partha Samanta Soumya Mukherjee Dr. Sujit K. Ghosh 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(3):965-969
Highly selective and sensitive aqueous‐phase detection of nitro explosive 2,4,6‐trinitrophenol (TNP) by a hydrolytically stable 3D luminescent metal–organic framework is reported. The compound senses TNP exclusively even in the presence of other nitro‐compounds, with an unprecedented sensitivity in the MOF regime by means of strategic deployment of its free amine groups. Such an accurate sensing of TNP, widely recognized as a harmful environmental contaminant in water media, establishes this new strategic approach as one of the frontiers to tackle present‐day security and health concerns in a real‐time scenario. 相似文献
20.
Peilin Deng Fan Yang Zhitong Wang Shenghua Chen Yinzheng Zhou Shahid Zaman Bao Yu Xia 《Angewandte Chemie (International ed. in English)》2020,59(27):10807-10813
Carbon dioxide (CO2) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of ?0.28 V vs. RHE and partial current density of over 200 mA cm?2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2O3@C promotes the rapid and selective CO2 reduction in which the Bi2O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth‐based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology. 相似文献