首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramolecular containers featuring both high catalytic activity and high enantioselectivity represent a design challenge of practical importance. Herein, it is demonstrated that a chiral octahedral coordination cage can be constructed by using twelve enantiopure Mn(salen)‐derived dicarboxylic acids as linear linkers and six Zn4p‐tert‐butylsulfonylcalix[4]arene clusters as tetravalent four‐connected vertices. The porous cage features a large hydrophobic cavity (≈3944 Å3) decorated with catalytically active metallosalen species and is shown to be an efficient and recyclable asymmetric catalyst for the oxidative kinetic resolution of racemic secondary alcohols and the epoxidation of olefins with up to >99 % enantiomeric excess. The cage architecture not only prevents intermolecular deactivation and stabilizes the Mn(salen) catalysts but also encapsulates substrates and concentrates reactants in the cavity, resulting in enhanced reactivity and enantioselectivity relative to the free metallosalen catalyst.  相似文献   

2.
Huidong Zhang 《Tetrahedron》2006,62(28):6640-6649
This article reports our recent work on the heterogeneous asymmetric epoxidation catalyzed by chiral Mn(salen) catalyst axially immobilized via phenoxyl groups and organic sulfonic groups. The asymmetric epoxidation of 6-cyano-2,2-dimethylchromene was especially presented in detail. The factors that affected the asymmetric induction, such as the nanopores and the external surface, the linkage length, and the modification of nanopores with methyl groups were discussed. It was found that the enantioselectivities increased with decreasing the nanopore sizes or increasing the linkage length in nanopore, and the Mn(salen) catalyst immobilized into nanopores generally gave higher ee values than those on the external surface. The heterogeneous Mn(salen) catalysts with modified nanopores gave a TOF of 14.8 h−1 and an ee value of 90.6% for the asymmetric epoxidation of 6-cyano-2,2-dimethylchromene, which were higher than the results (TOF 10.8 h−1, ee 80.1%) obtained for the homogeneous catalyst.  相似文献   

3.
The formal 1,3‐cycloaddition of 2‐diazocyclohexane‐1,3‐diones 1a –1 d to acyclic and cyclic enol ethers in the presence of RhII‐catalysts to afford dihydrofurans has been investigated. Reaction with a cis/trans mixture of 1‐ethoxyprop‐1‐ene ( 13a ) yielded the dihydrofuran 14a with a cis/trans ratio of 85 : 15, while that with (Z)‐1‐ethoxy‐3,3,3‐trifluoroprop‐1‐ene ( 13b ) gave the cis‐product 14b exclusively. The stereochemical outcome of the reaction is consistent with a concerted rather than stepwise mechanism for cycloaddition. The asymmetric cycloaddition of 2‐diazocyclohexane‐1,3‐dione ( 1a ) or 2‐diazodimedone (=2‐diazo‐5,5‐dimethylcyclohexane‐1,3‐dione; 1b ) to furan and dihydrofuran was investigated with a representative selection of chiral, nonracemic RhII catalysts, but no significant enantioselectivity was observed, and the reported enantioselective cycloadditions of these diazo compounds could not be reproduced. The absence of enantioselectivity in the cycloadditions of 2‐diazocyclohexane‐1,3‐diones is tentatively explained in terms of the Hammond postulate. The transition state for the cycloaddition occurs early on the reaction coordinate owing to the high reactivity of the intermediate metallocarbene. An early transition state is associated with low selectivity. In contrast, the transition state for transfer of stabilized metallocarbenes occurs later, and the reactions exhibit higher selectivity.  相似文献   

4.
Monodisperse crosslinked poly(hydroxyethyl methacrylate) particles (pHEMA) were synthesized for immobilization of the chiral Mn(III)salen homogeneous catalyst by axial coordination. The pHEMA‐Mn(III)salen catalyst was subsequently characterized by FT‐IR, UV and scanning electron microscopy. The results showed that, the heterogeneous Mn(III)salen catalysts also exhibited high activity and enantioselectivity compared to the homogeneous catalyst for the disubstituted cyclic indene and 6‐cyano‐2,2‐dimethylchromene. Moreover, the catalysts were easily separated from the reaction systems and could be renewed several times without significant loss of catalytic activity. Meanwhile, the enantiomeric excess (ee) value remained at 80% in the eighth cycle. The pHEMA support, immobilized by Mn(III)salen, probably acted as a mediator of the reaction between the substrate and the oxidant, and enhanced the stability of the Mn(III)salen compound. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The catalytic asymmetric aziridination of imines and diazo compounds (AZ reaction) mediated by boroxinate catalysts derived from the VANOL and VAPOL ligands was investigated with chiral imines derived from five different chiral, disubstituted, methyl amines. The strongest matched and mismatched reactions with the two enantiomers of the catalyst were noted with disubstituted methyl amines that had one aromatic and one aliphatic substituent. The synthetic scope for the AZ reaction was examined in detail for α‐methylbenzyl amine for cis‐aziridines from α‐diazo esters and for trans‐aziridines from α‐diazo acetamides. Optically pure aziridines could be routinely obtained in good yields and with high diastereoselectivity and the minor diastereomer (if any) could be easily separated. The matched case for cis‐aziridines involved the (R)‐amine with the (S)‐ligand, but curiously, for trans‐aziridines the matched case involved the (R)‐amine with the (R)‐ligand for imines derived from benzaldehyde and n‐butanal, and the (R)‐amine with the (S)‐ligand for imines derived from the bulkier aliphatic aldehydes pivaldehyde and cyclohexane carboxaldehyde.  相似文献   

6.
Epoxides represent a very important group of speciality and fine chemicals because they are derived directly from alkenes, a primary petrochemical source, and because of the breadth of opportunity they offer the organic synthetic chemist in terms of the highly selective reactions they undergo, often requiring only very mild conditions. Since most epoxides also bear at least one stereogenic centre the strategic importance of these molecules in synthesis is even higher. The most important asymmetric alkene epoxidation catalyst systems that have been discovered are those reported by Sharpless and his co‐workers utilising tartrate ester complexed Ti(IV) centres¹ and by Jacobsen and his co‐workers utilising chiral Mn(III) salen complexes.² The former system provides high conversions and high enantioselectivity (enantiomeric excess, ee%) in the case of allylic alcohol substrates, while the latter is likewise effective in the case of non‐functional cis‐internal alkenes, especially cyclic systems. Both catalytic systems are homogeneous and exploitation of both involve rather laborious work‐up procedures. Generally no attempt is made to recover and re‐use these catalysts. The potential advantages in converting a process catalysed by a homogeneous metal complex into one involving a heterogeneous polymer‐supported analogue have been well rehearsed.³ Suffice to say that on a laboratory scale supported metal complex catalysts considerably facilitate product work‐up and isolation, while on a large scale such heterogeneous species allow processes to be run continuously using packed or fluidised bed columns with considerable financial advantages both in terms of capital expenditure on plant and with regard to recurrent costs.  相似文献   

7.
Treatment of N,N′‐bis(4carboxysalicylidene)ethylenediamine (H4L), with MnCl2 ? (H2O)4, and Ln(NO3)3 ? (H2O)m (Ln=Nd, Eu, Gd, Dy, Tb), in the presence of N,N‐dimethylformamide (DMF)/pyridine at elevated temperature resulted (after work up) in the formation of 1D coordination polymers {[Ln2(MnLCl)2(NO3)2(dmf)5] ? 4 DMF}n ( 1 – 5 ). In these coordination polymers the rare earth ions are connected through carboxylate groups from Mn–salen units in a 1D chain structure. Thus, the Mn–salen complex acts as a “metalloligand” with open coordination sites. All compounds were used as catalysts in the liquid‐phase epoxidation of trans‐stilbene with molecular oxygen, which resulted in the formation of stilbene oxide. Since the choice of the lanthanide had virtually no influence on the performance of the catalyst, only the manganese–gadolinium was studied in detail. The influence of solvent, catalyst concentration, reaction temperature, oxidant, and oxidant flow rate on conversion, yield, and selectivity was analyzed. A conversion of up to 70 %, the formation of 61 % stilbene oxide (88 % selectivity), and a TON of 84 were observed after 24 h. A hot filtration test confirmed that the reaction is mainly catalyzed through a heterogeneous pathway, although a minor contribution of homogeneous species could not be completely excluded. The catalyst could be reused without significant loss of activity.  相似文献   

8.
This paper details the enantioselective performance of styrene/divinylbenzene-supported Mn- and Cr-based salen complexes for the epoxidation of olefins and the ring-opening of epoxides to azido-silyl ethers. The Mn catalyst produced the epoxides of 1,2-dihydronaphthalene, styrene, and cis-β-methylstyrene with enantiomeric excesses (ee's) of 46, 9, and 79%, respectively. For the Cr catalyst, the enantioselective ring-opening of epoxyhexane, propylene oxide, and cyclohexene oxide with trimethylsilyl azide proceeded with ee's of 34, 36, and 6%, respectively. Upon recycle of these heterogeneous catalysts, a degradation process was noted for the Mn-catalyst under the conditions for epoxidation that resulted in oxidation and decomposition of the ligand. This process also affects the homogeneous catalyst, thereby limiting the recyclability of both the homogeneous Mn catalyst and its heterogenized version for this reaction. The Cr-catalyzed reaction to ring-open epoxides employs milder conditions and allowed reuse of the heterogeneous catalyst without loss of activity or enantioselectivity through three runs with epoxyhexane. During reaction, the leaching of Cr from the heterogeneous catalyst is less than 0.1%, suggesting possible reuse of the catalyst over hundreds of cycles before reloading the polymer-supported salen ligand with metal would be necessary. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3888–3898, 1999  相似文献   

9.
This communication describes the design and application of a novel catalytic epoxidation system derived from the initial immobilization of a homogeneous sulfonato (salen)Mn(III) complex on two solid carriers (silica gel and siliceous earth) and subsequent dispersion of the supported manganese complexes into ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMImPF6) and 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMImBF4) for recycling. The performance of chiral (salen)Mn(III) system in enantioselective epoxidation of olefins was investigated systematically. Even higher enantioselectivity than that of the homogeneous counterpart was obtained with similar catalytic activity. In particular, the best catalytic result is that the combination of the silica gel‐supported (salen)Mn(III) catalyst and BMImPF6 affords 97–100% ee for epoxidation of α‐methylstyrene, and high ee values were retained even after three cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The efficient catalytic dehydrogenation of alkanes to olefins is one of the most investigated reactions in organic synthesis. In the coming years, an increased supply of shorter‐chain alkanes from natural and shale gas will offer new opportunities for inexpensive carbon feedstock through such dehydrogenation processes. Existing methods for alkane dehydrogenation using heterogeneous catalysts require harsh reaction conditions and have a lack of selectivity, whereas homogeneous catalysis methods result in significant waste generation. A strong need exists for atom‐efficient alkane dehydrogenations on a useful scale. Herein, we have developed improved acceptorless catalytic systems under optimal light transmittance conditions using trans‐[Rh(PMe3)2(CO)Cl] as the catalyst with different additives. Unprecedented catalyst turnover numbers are obtained for the dehydrogenation of cyclic and linear (from C4) alkanes and liquid organic hydrogen carriers. These reactions proceed with unique conversion, thereby providing a basis for practical alkane dehydrogenations.  相似文献   

11.
Catalytic properties of a series of chiral (pyrrolidine salen)Mn(III) complexes for asymmetric oxidation of aryl methyl sulfides were evaluated. Moderate activity, good chemical selectivity and low enantioselectivity were attained with iodosylbenzene as a terminal oxidant. Enantioselectivity of sulfide oxidation was affected slightly by polar solvent and the sulfoxidation carried out in THF for thioanisole and in CH3CO2Et for electron‐deficient sulfides gave better enatioselctivities. The addition of the donor ligand PPNO (4‐phenylpyridine N‐oxide) or MNO (trimethylamine N‐oxide) only has a minor positive effect on the enantioselectivity. Also explored was the steric effect of the Naza‐substituent in the backbone of (pyrrolidine salen)Mn(III) complexes on the enantioselectivity of sulfide oxidation. The sulfides' access pathway is discussed based on the catalytic results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
(E)‐1,3‐Pentadiene (EP) and (E)‐2‐methyl‐1,3‐pentadiene (2MP) were polymerized to cis‐1,4 polymers with homogeneous and heterogeneous neodymium catalysts to examine the influence of the physical state of the catalyst on the polymerization stereoselectivity. Data on the polymerization of (E)‐1,3‐hexadiene (EH) are also reported. EP and EH gave cis‐1,4 isotactic polymers both with the homogeneous and with the heterogeneous system, whereas 2MP gave an isotactic cis‐1,4 polymer with the heterogeneous catalyst and a syndiotactic cis‐1,4 polymer, never reported earlier, with the homogeneous one. For comparison, the results obtained with the soluble CpTiCl3‐based catalyst (Cp = cyclopentadienyl), which gives cis‐1,4 isotactic poly(2MP), are examined. A tentative interpretation is given for the mechanism of the formation of the stereoregular polymers obtained and a complete NMR characterization of the cis‐1,4‐syndiotactic poly(2MP) is reported. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3227–3232  相似文献   

13.
A wide range of 2,3‐disubstituted quinoxalines have been successfully hydrogenated with H2 using borane catalysts to produce the desired tetrahydroquinoxalines in 80–99 % yields with excellent cis selectivity. Significantly, the asymmetric reaction employing chiral borane catalysts generated by the in situ hydroboration of chiral dienes with HB(C6F5)2 under mild reaction conditions has also been achieved with up to 96 % ee, and represents the first catalytic asymmetric system to furnish optically active cis‐2,3‐disubstituted 1,2,3,4‐tetrahydroquinoxalines.  相似文献   

14.
An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α‐amino acids and has been demonstrated to be effective in vanadium‐catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc‐catalyzed asymmetric aldol reaction, a versatile bottom‐up route to make complex functional compounds. Zinc, the second‐most abundant transition metal in humans, is an environment‐friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal‐free asymmetric catalysis, that is, α‐amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet‐attached α‐amino acids were applied as chiral ligands together with catalytic ZnII centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H‐bonding effects; this resembles the role of a huge and rigid substituent.  相似文献   

15.
The physiochemical properties, comonomer sequencing, and regiospecificity of the linkages between monomeric units within homo/copolymers based on 5,6‐di‐substituted norbornene and 7‐oxanorbornene type monomers by ring‐opening metathesis polymerization are reported and correlated to their primary and secondary structural elements. In general, first‐generation Grubbs‐ I1 ruthenium catalyst generates polymers with high trans content that exhibits an extended secondary structure with exo,exo substituents, whereas second‐generation Grubbs‐ I2 catalyst produces polymers with high cis content that forms tight turns, resulting in a compact structure. Furthermore, I2 ‐produced polymers exhibit a high level of alternating cis–trans double bonds along their polymeric backbone. In stark contrast, both first‐ and second‐generation Grubbs catalysts display complete reversal in cis/trans selectivity when an oxygen atom is in position‐7 of the norbornene‐ring along with mono‐endo‐substitution in position‐5 or 6, and hence highlighting the importance of stereoelectronic complexation by the catalyst with the next incoming monomer for cis/trans selectivity. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2477–2501  相似文献   

16.
Asymmetric hydrogenation of maleic and fumaric acid derivatives with iridium catalysts based on N,P ligands provides an efficient route to chiral enantioenriched succinates. A new catalyst derived from a 2,6‐difluorophenyl‐substituted pyridine‐phosphinite ligand was developed and enables the conversion of a wide range of 2‐alkyl and 2‐arylmaleic acid diesters into the corresponding succinates in high enantiomeric purity. Mixtures of cis/trans substrates can be hydrogenated in an enantioconvergent fashion with high enantioselectivity, and further enhances the scope of this transformation. The products are valuable chiral building blocks with a structural motif found in many bioactive compounds, such as metalloproteinase inhibitors.  相似文献   

17.
Here we describe an unprecedented synthetic approach to poly(styrene)‐supported chiral salen ligands by the free radical polymerization of an unsymmetrical styryl‐substituted salen monomer (H2salen=bis(salicylidene)ethylenediamine). The new method allows for the attachment of salen moieties to the polymer main chain in a flexible, pendant fashion, avoiding grafting reactions that often introduce ill‐defined species on the polymers. Moreover, the loading of the salen is controlled by the copolymerization of the styryl‐substituted salen monomer with styrene in different ratios. The polymeric salen ligands are metallated with cobalt(II ) acetate to afford the corresponding supported Co–salen complexes, which are used in the hydrolytic kinetic resolution of racemic epichlorohydrin, exhibiting high reactivity and enantioselectivity. Remarkably, the copolymer‐supported Co–salen complexes showed a better catalytic performance (>99 % ee, 54 % conversion, one hour) in comparison to the homopolymeric analogues and the small molecule Co–salen complex. The soluble poly(styrene)‐supported catalysts were recovered by precipitation after the catalytic reactions and were recycled three times to afford almost identical enantiomeric excesses as the first run, with slightly reduced reaction rates.  相似文献   

18.
Cation‐binding salen nickel catalysts were developed for the enantioselective alkynylation of trifluoromethyl ketones in high yield (up to 99 %) and high enantioselectivity (up to 97 % ee). The reaction proceeds with substoichiometric quantities of base (10–20 mol % KOt‐Bu) and open to air. In the case of trifluoromethyl vinyl ketones, excellent chemo‐selectivity was observed, generating 1,2‐addition products exclusively over 1,4‐addition products. UV‐vis analysis revealed the pendant oligo‐ether group of the catalyst strongly binds to the potassium cation (K+) with 1:1 binding stoichiometry (Ka=6.6×105 m ?1).  相似文献   

19.
A novel platinum‐catalyzed asymmetric ring‐opening reaction of oxabenzonorbornadiene with terminal alkynes is described. The reaction affords optically active cis‐2‐alkynyl‐1,2‐dihydronaphthalen‐1‐ols in moderate yields with good enantioselectivity in the presence of catalytic amounts of Pt(COD)Cl2/(S)‐BINAP and an excess of zinc powder. The products were obtained exclusively with the relative cis‐configuration of the ring substituents and the prevalent (1R,2S)‐configuration of the stereocenters, as determined by single crystal X‐ray diffraction analysis.  相似文献   

20.
Earth‐abundant nickel, coordinated with a suitable chiral bisphosphine ligand, was found to be an efficient catalyst for the asymmetric hydrogenation of 2‐amidoacrylates, affording the chiral α‐amino acid esters in quantitative yields and excellent enantioselectivity (up to 96 % ee). The active catalyst component was studied by NMR and HRMS, which helped us to realize high catalytic efficiency on a gram scale with a low catalyst loading (S/C=2000). The hydrogenated products could be simply converted into chiral α‐amino acids, β‐amino alcohols, and their bioactive derivatives. Furthermore, the catalytic mechanism was investigated using deuterium‐labeling experiments and computational calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号