首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The preparation of a new capped silica mesoporous material, Rh‐Azo‐S , for on‐command delivery applications in the presence of target enzymes is described. The material consists of nanometric mesoporous MCM‐41‐like supports loaded with Rhodamine B and capped with an azopyridine derivative. The material was designed to show “zero delivery” and to display a cargo release in the presence of reductases and esterases, which are usually present in the colon, mainly due to intestinal microflora. The opening and cargo release of Rh‐Azo‐S in vitro studies were assessed and seen to occur in the presence of these enzymes, whereas no delivery was noted in the presence of pepsine. Moreover, Rh‐Azo‐S nanoparticles were used to study controlled Rhodamine B dye delivery in intracellular media. HeLa cells were employed for testing the “non”‐toxicity of nanoparticles. Moreover, delivery of the dye in these cells, through internalization and enzyme‐mediated gate opening, was confirmed by confocal microscopy. Furthermore, the nanoparticles capped with the Azo group and loaded with a cytotoxic camptothecin ( CPT ) were also prepared (solid CPT‐Azo‐S ) and used as delivery nanodevices in HeLa cells. When this solid was employed, the cell viability decreased significantly due to internalization of the nanoparticles and delivery of the cytotoxic agent.  相似文献   

2.
The synthesis and characterisation of new capped silica mesoporous nanoparticles for on‐command delivery applications is reported. Functional capped hybrid systems consist of MCM‐41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine B inside the mesopores. Two solid materials, Rh‐PAzo8‐S and Rh‐PAzo6‐S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh‐PAzo8‐S and Rh‐PAzo6‐S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esterase enzyme due to the progressive hydrolysis of polyester chains. Moreover, nanoparticles Rh‐PAzo8‐S and Rh‐PAzo6‐S were used to study the controlled release of the dye in intracellular media. Nanoparticles were not toxic for HeLa cells and endocytosis‐mediated cell internalisation was confirmed by confocal microscopy. Furthermore, the possible use of capped materials as a drug‐delivery system was demonstrated by the preparation of a new mesoporous silica nanoparticle functionalised with PAzo6 and loaded with the cytotoxic drug camptothecin (CPT‐PAzo6‐S). Following cell internalisation and lysosome resident enzyme‐dependent gate opening, CPT‐PAzo6‐S induced CPT‐dependent cell death in HeLa cells.  相似文献   

3.
In this study, an adjustable pH‐responsive drug delivery system using mesoporous silica nanoparticles (MSNs) as the host materials and the modified polypeptides as the nanovalves is reported. Since the polypeptide can self‐assemble via electrostatic interaction at pH 7.4 and be disassembled by pH changes, the modified poly(l ‐lysine) and poly(l ‐glutamate) are utilized for pore blocking and opening in the study. Poly(l ‐lysine)‐MSN (PLL‐MSN) and poly(l ‐glutamate)‐MSN (PLG‐MSN) are synthesized via the ring opening polymerization of N‐carboxyanhydrides onto the surface of mesoporous silica nanoparticles. The successful modification of the polypeptide on MSN is proved by Zeta potential change, X‐ray photoelectron spectroscopy (XPS), solid state NMR, and MALDI‐TOF MS. In vitro simulated dye release studies show that PLL‐MSN and PLG‐MSN can successfully load the dye molecules. The release study shows that the controlled release can be constructed at different pH by adjusting the ratio of PLL‐MSN to PLG‐MSN. Cellular uptake study indicates that the drug is detected in both cytoplasm and nucleus, especially in the nucleus. In vitro cytotoxicity assay indicates that DOX loaded mixture nanoparticles (ratio of PLL‐MSN to PLG‐MSN is 1:1) can be triggered for drug release in HeLa cells, resulting in 88% of cell killing.  相似文献   

4.
New capped silica mesoporous nanoparticles for intracellular controlled cargo release within cathepsin B expressing cells are described. Nanometric mesoporous MCM‐41 supports loaded with safranin O ( S1‐P ) or doxorubicin ( S2‐P ) containing a molecular gate based on a cathepsin B target peptidic sequence were synthesized. Solids were designed to show “zero delivery” and to display cargo release in the presence of cathepsin B enzyme, which selectively hydrolyzed in vitro the capping peptide sequence. Controlled delivery in HeLa, MEFs WT, and MEFs lacking cathepsin B cell lines were also tested. Release of safranin O and doxorubicin in these cells took place when cathepsin B was active or present. Cells treated with S2‐P showed a fall in cell viability due to nanoparticles internalization, cathepsin B hydrolysis of the capping peptide, and cytotoxic agent delivery, proving the possible use of these nanodevices as new therapeutic tools for cancer treatment.  相似文献   

5.
Dendron‐like poly(ε‐benzyloxycarbonyl‐L ‐lysine)/linear poly(ethylene oxide) block copolymers (i.e., Dm‐PZLys‐b‐PEO, m = 0 and 3; Dm are the propargyl focal point poly(amido amine) dendrons having 2m primary amine groups) were for the first time synthesized by combining ring‐opening polymerization (ROP) of ε‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys‐NCA) and click chemistry, where Dm‐PZLys homopolypeptides were click conjugated with azide‐terminated PEO. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. Both homopolypeptides and copolymers presented a liquid crystalline phase transition for PZLys block, and the transition was irreversible. Moreover, the degree of crystallinity of PEO block within linear copolymers decreased from 96.2% to 20.4% with increasing PZLys composition, whereas that within dendritic copolymers decreased to zero. The secondary conformation of PZLys progressively changed from β‐sheet to α‐helix with increasing the chain length. These copolymers self‐assembled into spherical nanoparticles in aqueous solution, and the anticancer drug doxorubicin‐loaded nanoparticles gave a similar morphology compared with their blank counterparts. The drug‐loaded nanoparticles showed a triphasic drug‐release profile at aqueous pH 7.4 or 5.5 and 37 °C and sustained a longer drug‐release period for about 2 months. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
New poly(dimethylsiloxane)‐based polymer organogelators with L ‐lysine derivatives were synthesized on the basis of synthetically simple procedure, and their organogelation abilities were investigated. These polymer organogelators have a good organogelation ability and form organogels in many organic solvents. In the organogels, polymer gelators constructed a mesoporous structure with a pore size of about 1 μm formed by entanglement of the self‐assembled nanofibers. The L ‐lysine derivatives in the polymer gelators functioned as a gelation‐causing segment and the organogelation was induced by self‐assembly of the L ‐lysine segments through a hydrogen bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3817–3824, 2006  相似文献   

7.
Coating of silica nanoparticles by biocompatible and biodegradable polymers of ε‐caprolactone and L ‐lactide was performed in situ by ring‐opening polymerization of the cyclic monomers with aluminum, yttrium, and tin alkoxides as catalysts. Hydroxyl groups were introduced on the silica surface by grafting of a prehydrolyzed 3‐glycidoxypropyl trimethoxysilane to initiate a catalytic polymerization in the presence of metal alkoxides. In this manner, free polymer chains were formed to grafted ones, and the graft density was controlled by the nature of the metal and the alcohol‐to‐metal ratio. The grafting reaction was extensively characterized by spectroscopic techniques and quantified. Nanocomposites containing up to 96% of polymer were obtained by this technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1976–1984, 2004  相似文献   

8.
Ordered mesoporous silica nanoparticles with pore diameter of 5 nm were synthesized by modification of the sol‐gel synthesis method. Post‐synthesis two‐step grafting of thermoresponsive poly(N‐isopropylacrylamide) inside the mesopores of the nanoparticles was carried out by distillation–precipitation polymerization of the methacryloxy‐functionalized mesoporous nanoparticles with N‐isopropylacrylamide monomer. A precise control on the quantity of the grafted polymer was achieved by changing the ratio of monomer to methacryloxy‐functionalized nanoparticles. The polymer‐grafted hybrid nanoparticles obtained were fully characterized by infrared spectroscopy, X‐ray diffraction, dynamic light scattering, transmission electron microscopy, thermal, and gas‐volumetric analyses, which clearly showed presence and thermoresponsive behavior of the polymer inside the mesopores with the preservation of the characteristic mesoporous structure of the nanoparticles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
《中国化学》2017,35(7):1125-1132
A novel biocompatible polymer was prepared by grafting the derivate of β ‐cyclodextrin (6‐SH ‐β ‐CD ) onto poly(3,4‐dihydroxycinnamic acid) (PDHCA ) via Michael addition. PDHCA ‐β ‐CD nanoparticles were prepared by the self‐assembly of amphiphilic PDHCA ‐β ‐CD polymer with N,N ‐dimethylformamide (DMF ) as good solvent and water as poor solvent. The PDHCA ‐β ‐CD nanoparticles were monodispersed with spherical morphology as shown in the scanning electron microscopic (SEM ) images in accord with the result of dynamic light scattering (DLS ) measurement. The size of the nanoparticles could be controlled from 60 to 180 nm by tuning the grafting degree (GD ) of PDHCA ‐β ‐CD polymer and also significantly influenced by the amount of water used during the process. These as‐prepared nanoparticles were stable without any significant change in the particle size after six‐months’ storage and even after being irradiated by UV at λ >280 nm for hours. The formation mechanism of PDHCA ‐β ‐CD nanoparticles was explored. The content of doxorubicin (DOX ) loaded onto the nanoparticles was up to 39% with relatively high loading efficiency (approximately 78.8% of initial DOX introduced was loaded). In vitro release studies suggested that DOX released slowly from PDHCA ‐β ‐CD nanoparticles. These features strongly support the potential of developing PDHCA ‐β ‐CD nanoparticles as carriers for the controlled delivery of drug.  相似文献   

10.
The immobilization of copper complexes by covalent anchoring of the ligand on the surface of mesoporous MCM‐41 has been described. Bis[2‐(phenylthio)benzylidene]‐1,2‐ethylenediamine as a new N2S2 donor salen‐type ligand was covalently anchored onto nanopores of MCM‐41 coordinated with copper (I) halide. The organic–inorganic hybrid material was achieved readily using 3‐mercaptopropyltrimethoxysilane as a reactive surface modifier. 2‐Nitrobenzaldehyde was reacted smoothly with the thiol moieties in order to form functionalized nanoporous silica with carbaldehyde groups. The resulting supported organic moieties were converted to thiosalen ligand and coordinated with CuX (X = CN, Cl, Br, I). Characterization of the heterogeneous catalyst by X‐ray diffraction, N2 sorption, FT‐IR, diffuse reflectance UV‐visible and TGA techniques indicated successful grafting of the copper complex inside the nano‐channels of MCM‐41. The heterogenized catalyst was evaluated by the Mannich condensation reaction of aldehydes, amines and alkynes. In this reaction, the corresponding propargylamines were obtained as single products in good to excellent yields. Factors such as reaction temperature, solvent, catalyst loading, leaching and reusability of the catalyst also were discussed. The use of MCM‐41 as support permits an easier separation and recycles with only a marginal decrease in reactivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Polylysines (PL) are highly interesting polymers due to their biocompatibility and their high number of reactive amino groups. So far it was not possible to synthesize them directly from L ‐lysine. Here, we describe two different synthesis routes to selectively polymerize lysine in one batch without the use of protection groups. Applying 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide as activating agent for the polycondensation of L ‐lysine in water gave selectively linear ε‐PLL. In contrast to this, the polymerization of L ‐lysine in chloroform in the presence of dicyclohexyl carbodiimide and 18‐crown‐6 ether selectively afforded pure α‐PLL. We also assessed the capability of polylysine derivatization by polymer analog reactions with acetic anhydride, methyl iodide and 2,4,6‐trinitrobenzenesulfonic acid. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5053–5063, 2008  相似文献   

12.
Herein, we present a straightforward synthesis of pH‐responsive chitosan‐capped mesoporous silica nanoparticles (MSNs). These MCM‐41‐type MSNs could be used as nanocapsules to accommodate guest molecules. Subsequently, (3‐glycidyloxypropyl)trimethoxysilane was grafted onto the surface of the MSNs, which served as a bridge to link between MSNs and chitosan, which is ubiquitous in nature and commercially available. Owing to the pH‐responsive and biocompatible features of chitosan, the loading and release of an anti‐cancer drug, doxorubicin hydrochloride, were carried out in vitro, in which the composite chitosan‐capped MSNs (CS‐MSNs) showed excellent environmental response. As the pH value of the media decreased, the degree of drug release correspondingly increased. Moreover, thanks to the perfect biocompatibility of chitosan, the CS‐MSNs exhibited lower cytotoxicity than that of the naked MSNs in an MTT assay. In addition, the in vitro kill potency against MCF‐7 breast‐cancer cells was enhanced over time, as well as with increasing concentration of the drug‐loaded CS‐MSNs. These results indicate that CS‐MSNs are promising candidates for pH‐responsive drug delivery in cancer therapy.  相似文献   

13.
In vivo detection of cellular senescence is accomplished by using mesoporous silica nanoparticles loaded with the NIR‐FDA approved Nile blue (NB) dye and capped with a galactohexasaccharide ( S3 ). NB emission at 672 nm is highly quenched inside S3 , yet a remarkable emission enhancement is observed upon cap hydrolysis in the presence of β‐galactosidase and dye release. The efficacy of the probe to detect cellular senescence is tested in vitro in melanoma SK‐Mel‐103 and breast cancer 4T1 cells and in vivo in palbociclib‐treated BALB/cByJ mice bearing breast cancer tumor.  相似文献   

14.
We report the development of an MCM‐41 mesoporous support that is functionalised with saccharides at the pore outlets and contains the dye [Ru(bipy)3]2+ in the pores (solid S1 ; bipy=2,2′‐bipyridyl). For this hybrid system, the inhibition of mass transport of the dye from the pore voids to the bulk solution in the presence of borate is demonstrated in water at neutral pH. The formation of the corresponding boroester derivative is related to the selective reaction of borate with the appended saccharides. This control is selective and only anion borate, among several anions and cations, can act as a molecular tap and inhibit the delivery of the entrapped guest. Additionally, the S1 –borate system behaves as pH‐controlled gatelike scaffolding. This pH‐responsive release can be achieved in an acidic pH (due to hydrolysis of the boroester), whereas the system remains closed at neutral pH. Molecular dynamic simulations using force‐field methods have been made to theoretically study the open/close borate‐driven mechanism. A mesoporous silica structure was constructed for this purpose, taking the plane (1?11) of the β‐cristobalite structure as a base on which hexagonal nanopores and anchored saccharide derivatives were included. The final model shows a highly flexible nanopore diameter of approximately 12.5 Å of similar size to the [Ru(bipy)3]2+ complex (ca. 12 Å). However, the anchoring of borate to the appended saccharides results in a remarkable reduction of the pore size (down to ca. 6.4 Å) and a significant constraint in the flexibility and mobility of the saccharides. The theoretical calculations are in agreement with the experimental results and enable visualisation of the functional borate‐driven dye‐delivery‐inhibition outcome.  相似文献   

15.
Chiral N‐sulfonyldiamine was successfully anchored on mesoporous MCM‐41 silica. The MCM‐41‐supported chiral N‐sulfonyldiamine was used as an efficient heterogeneous chiral ligand in the asymmetric transfer hydrogenation of ketones. This heterogeneous system offered satisfactory enantioselectivities up to 94 % with excellent conversions.  相似文献   

16.
《化学:亚洲杂志》2017,12(7):775-784
Two different acetylcholinesterase (AChE)‐capped mesoporous silica nanoparticles (MSNs), S1‐AChE and S2‐AChE , were prepared and characterized. MSNs were loaded with rhodamine B and the external surface was functionalized with either pyridostigmine derivative P1 (to yield solid S1 ) or neostigmine derivative P2 (to obtain S2 ). The final capped materials were obtained by coordinating grafted P1 or P2 with AChE′s active sites (to give S1‐AChE and S2‐AChE , respectively). Both materials were able to release rhodamine B in the presence of diisopropylfluorophosphate (DFP) or neostigmine in a concentration‐dependent manner via the competitive displacement of AChE through DFP and neostigmine coordination with the AChE‘s active sites. The responses of S1‐AChE and S2‐AChE were also tested with other enzyme inhibitors and substrates. These studies suggest that S1‐AChE nanoparticles can be used for the selective detection of nerve agent simulant DFP and paraoxon.  相似文献   

17.
A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy.  相似文献   

18.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

20.
A series of poly(L ‐lysine)s grafted with aliphatic polyesters, poly(L ‐lysine)‐graft‐poly(L ‐lactide) (PLy‐g‐PLLA) and poly(L ‐lysine)‐graft‐poly(?‐caprolactone) (PLy‐ g‐PCL), were synthesized through the Michael addition of poly(L ‐lysine) and maleimido‐terminated poly(L ‐lactide) or poly(?‐caprolactone). The graft density of the polyesters could be adjusted by the variation of the feed ratio of poly(L ‐lysine) to the maleimido‐terminated polyesters. IR spectra of PLy‐g‐PCL showed that the graft copolymers adopted an α‐helix conformation in the solid state. Differential scanning calorimetry measurements of the two kinds of graft copolymers indicated that the glass transition temperature of PLy‐g‐PLLA and the melting temperature of PLy‐g‐PCL increased with the increasing graft density of the polyesters on the backbone of poly(L ‐lysine). Circular dichroism analysis of PLy‐g‐PCL in water demonstrated that the graft copolymer existed in a random‐coil conformation at pH 6 and as an α‐helix at pH 9. In addition, PLy‐g‐PCL was found to form micelles to vesicles in an aqueous medium with the increasing graft density of poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1889–1898, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号