首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonmodified multiwalled carbon nanotubes (MWCNTs)/sulfonated polyoxadiazole (sPOD) nanocomposites are successfully prepared by a facile solution route. The pristine MWCNTs are dispersed in a sPOD solution, and the mixtures are fabricated into thin films by solution casting. The homogeneous dispersion of nanotubes in the composites is confirmed by transmission electron microscopy. The mechanical properties, thermal stability, and electrical conductivity are investigated. Tensile strength, elongation at break, and tensile energy to break are shown to increase by more than 28, 45, and 73%, respectively, by incorporating up to 1.0 wt % pristine MWCNTs. The experimental values for sPOD/MWCNTs composite stiffness are compared with Halpin‐Tsai and modified Halpin‐Tsai predictions. The storage modulus is found to increase up to 10% at low CNT loading. The composite films, which have an outstanding thermal stability, show an increase of up to 57 °C in the initial degradation temperature. The addition of 1.0 wt % MWCNTs increases the electrical conductivity of the sPOD matrix by two orders of magnitude. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
This study was aimed to prepare biodegradable and porous nanocomposite scaffolds with microtubular orientation structure as a model for nerve tissue engineering by thermally induced phase separation (TIPS) method using dioxane as the solvent, crystalline poly (L‐lactic acid) (PLLA) and multi‐walled carbon nanotubes (MWCNTs). In order to overcome dispersion of MWCNTs in the PLLA matrix, heparinization of MWCNTs was performed. Solvent crystallization, oriented structure, the mean pore diameter and porosity percentage of the scaffolds were controlled by fundamental system parameters including temperature‐gradient of the system, polymer solution concentration and carbon nanotube content. Scanning Electron Microscopy (SEM), ImageJ, software and dynamic mechanical thermal analysis (DMTA) were used to investigate the structural and mechanical properties. TEM observation was carried out for characterization of nanotube dispersion in PLLA. It was found that the scaffolds containing heparinized multi‐walled carbon nanotubes (HMWCNTs) exhibited higher storage modulus, better carbon nanotube (CNT) dispersion and tubular orientation structure than those with non heparinized MWCNTs. In‐vitro studies were also conducted by using murine P19 cell line as a suitable model system to analyze neuronal differentiation over a 2‐week period. Immunofluorescence and DAPI staining were used to confirm the cells' attachment and differentiation on the PLLA/HMWCNT nanocomposite scaffolds. Based on the results, we can conclude that the PLLA/HMWCNT scaffolds enhanced the nerve cell differentiation and proliferation, and therefore, acted as a positive cue to support neurite outgrowth. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

4.
Multi‐walled carbon nanotubes (MWCNTs) filled with different species of cobalt (metallic cobalt, cobalt oxide) were synthesized by a chemical vapor deposition method through cobaltocene pyrolysis. A systematic study was performed to correlate different experimental conditions with the structure and characteristics of the obtained material. Thin films of Co‐filled CNTs were deposited over conductive substrates through a liquid–liquid interfacial method and were used for cobalt hexacyanoferrate (CoHCFe) electrodeposition by an innovative route in which the Co species encapsulated in the CNTs were employed as reactants. The CNT/CoHCFe films were characterized by different spectroscopic, microscopic, and electrochemical techniques and presented high electrochemical stability in different media. The nanocomposites were applied as both an electrochemical sensor to H2O2 and a cathode for ion batteries and showed limits of detection at approximately 3.7 nmol L ?1 and a capacity of 130 mAh g?1 at a current density of 5 A g?1.  相似文献   

5.
Multi‐walled carbon nanotubes (MWCNTs)‐core/thiophene polymer‐sheath composite nanocables were synthesized by chemical oxidative polymerization of 3,4‐ethylenedioxythiophene (EDOT) with oxidant (FeCl3) in the presence of cationic surfactant, deceyltrimethyl ammonium bromide (DTAB). In the polymerization process, DTAB surfactant molecules were adsorbed on the surface of MWCNTs and forms MWCNTs‐DTAB soft template. Upon the addition of EDOT and oxidant, the polymerization take place on the surface of MWCNTs and PEDOT is gradually deposited on the surface of MWCNTs. The resulting MWCNTs‐PEDOT nanocomposites have the nanocable structure. Nanocomposites were characterized by HRTEM, FE‐SEM, XRD, XPS, TGA, FTIR and PL, respectively. The π‐π interactions between PEDOT and MWCNTs enhancing the thermal and electrical properties of the nanocomposites with loading of MWCNTs. The temperature dependence conductivity measurements show that the conductivity of the nanocomposite decrease with a decrease of temperature, and conductivity‐temperature relationship is well fit by the quasi‐one dimensional variable range hopping mode. The mechanism for the formation of composite nanocables was explained on the basis of self‐ assembly of micelles. The reported self‐assembly strategy for the synthesis of PEDOT‐coated MWCNTs in micellar medium is a rapid, versatile, potentially scalable, stable, and making it useful for further exploitation in a varies types of applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1477–1484, 2010  相似文献   

6.
We report an innovative supramolecular architecture for bienzymatic glucose biosensing based on the non‐covalently functionalization of multi‐walled carbon nanotubes (MWCNTs) with two proteins, glucose oxidase (GOx) (to recognize glucose) and avidin (to allow the specific anchoring of biotinylated horseradish peroxidase (b‐HRP)). The optimum functionalization was obtained by sonicating for 10 min 0.50 mg mL?1 MWCNTs in a solution of 2.00 mg mL?1 GOx+1.00 mg mL?1avidin prepared in 50 : 50 v/v ethanol/water. The sensitivity to glucose for glassy carbon electrodes (GCE) modified with MWCNTs‐GOx‐avidin dispersion and b‐HRP (GCE/MWCNTs‐GOx‐avidin/b‐HRP), obtained from amperometric experiments performed at ?0.100 V in the presence of 5.0×10?4 M hydroquinone, was (4.8±0.3) μA mM?1 (r2=0.9986) and the detection limit was 1.2 μM. The reproducibility for 5 electrodes using the same MWCNTs/GOx‐avidin dispersion was 4.0 %, while the reproducibility for 3 different dispersions and 9 electrodes was 6.0 %. The GCE/MWCNT‐GOx‐avidin/b‐HRP was successfully used for the quantification of glucose in a pharmaceutical product and milk.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs) have been synthesized by the floating catalyst method using toluene as the carbon source and mixtures of ferrocene and ferrocenyl sulfide as the catalyst. Products were characterized by both low‐resolution and high‐resolution (HR) TEM analysis. It was found that the presence of large amounts of sulfur in the reactant mixture generated only amorphous carbon while lower amounts of sulfur led to mixtures of MWCNTs and carbon fibres. The product distribution, yield and the tube diameters varied with the sulfur content. HRTEM analysis revealed that the MWCNTs were poorly graphitized. Comparison with data using other sulfur sources (S8, thiophene) suggested that the proximity of the sulfur to the Fe catalyst in the gas phase did play a role in the CNT formation and provides a method of ‘carrying’ elements to a catalytic site. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Multiwalled carbon nanotubes (MWCNTs), carbon fibers (CFs) and carbon spheres (CSs) were synthesized by an injection chemical vapour deposition (CVD) method using toluene solutions of CpFe(CO)2Me as catalyst. The effect of pyrolysis temperature (800-1000 °C), catalyst concentration (5 and 10 wt% in toluene) and solution injection rate (0.2 and 0.8 ml/min) on the type and yield of carbonaceous product synthesized was investigated. The carbonaceous materials were characterized by transmission electron microscopy (TEM), thermal gravimetric analysis (TGA) and Raman spectroscopy. The use of CpFe(CO)2I as catalyst generated only carbon fibres and balls (wide range of conditions). Studies involving the addition of I2 to catalyst solutions confirmed the poisoning effect of I on CNT production.  相似文献   

9.
In this study, the maleimide‐thiophene copolymer‐functionalized graphite oxide sheets (PTM21‐GOS) and carbon nanotubes (PTM21‐CNT) were developed for polymer solar cell (PSC) applications. The grafting of PTM21‐OH onto the CNT and GO sheets was confirmed using FTIR spectroscopy. PTM21‐CNT and PTM21‐GOS exhibited excellent dispersal behavior in organic solvents. Better thermal stability was observed for PTM21‐CNT and PTM21‐GOS as compared with that for PTM21‐OH. In addition, the optical band gaps of PTM21‐GOS and PTM21‐CNT were lower than that of PTM21‐OH. We incorporated PTM21‐GOS and PTM21‐CNT individually into poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends for use as photoconversion layers of PSCs. Good distributional homogeneity was observed for PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend film. The UV–vis absorption peaks of the blend films red‐shifted slightly upon increasing the content of PTM21‐GOS or PTM21‐CNT. The band gap energies and LUMO/HOMO energy levels of the P3HT/PTM21‐GOS and P3HT/PTM21‐CNT blend films were slightly lower than those of the P3HT film. The conjugated polymer‐functionalized PTM21‐GOS and PTM21‐CNT behaved as efficient electron acceptors and as charge‐transport assisters when incorporated into the photoactive layers of the PSCs. PV performance of the PSCs was enhanced after incorporating PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

10.
A graphite‐epoxy electrode (GE) modified with multiwalled carbon nanotubes (MWCNTs) and horseradish peroxidase ( GE/MWCNTs‐HRP) was used to build a glyphosate biosensor whose performance in aqueous solutions depends on the enzyme activity. For the biosensor preparation, MWCNTs were deposited onto the GE surface by electrophoresis using an oxidative treatment (H2SO4/HNO3) in presence of cetyl tributylammonium bromide (CTAB) as a cationic surfactant. The surfactant was further removed from the MWCNTs surface by dipping the electrode in an EtOH/HCl solution. The physical immobilization of HRP and therefore the glyphosate sensing capabilities was tested at pH 4 where the herbicide exhibits one only species. Circular dichroism studies suggested that the secondary structure of HRP changes as a result of its interaction with glyphosate and that this change is intensified by the combination of glyphosate and H2O2, which may explain the decrease of the enzyme catalytic activity with the increase of glyphosate concentration. The glyphosate quantification in doped‐maize kernels was highly reproducible and exhibits detection and quantification limits of 1.32 pM and 1.63 pM respectively. The biosensor is also characterized by a high recovery (100 %) and precision (coefficient of variation <1 %) and can be employed in presence of interfering substances such as chlorpyrifos (an organophosphate pesticide) and starch.  相似文献   

11.
Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)6]3? and KCl. Fourier transform infrared spectroscopy, UV‐vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer‐by‐layer technique. The thus‐prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with two types of chemical moieties (i.e. carboxylic, ? COOH and hydroxyl benzoic acid groups, ‐HBA) on their sidewalls in order to improve their interaction with a liquid crystalline polymer (LCP) and dispersion in LCP. We have investigated the rheological, mechanical, dynamic mechanical, and thermal properties in detail with variation of HBA‐functionalized MWCNTs in the LCP matrix. Effect of the dispersion state of the functionalized MWCNTs in the LCP matrix on the rheological behavior was also studied. The composites containing HBA‐functionalized MWCNTs showed higher complex viscosity, storage, and loss modulus than the composites with the same loading of raw MWCNTs and MWCNT‐COOH. It was suggested that the HBA‐functionalized MWCNTs exhibited a better dispersion in the polymer matrix and formed stronger CNT‐polymer interaction in the composites than the raw MWCNTs and MWCNT‐COOH, which was also confirmed by FESEM and FTIR studies. As a result, the overall mechanical performance of the HBA‐MWCNT‐LCP composites could be improved significantly. For example, the addition of 4 wt% HBA‐MWCNT to LCP resulted in the considerable improvements in the tensile strength and modulus of LCP (by 66 and 90%, respectively). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Polyblend and nanocomposite films of sodium salt of carboxymethylcellulose (Na‐CMC)/polyacrylamide (PAM) and Na‐CMC/PAM modified with carbon nanotubes (CNT) were synthesized by the solution casting technique. The effect of PAM and CNT loading on the structural, optical, and nanoscale free volume properties of Na‐CMC was studied. X‐ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy exhibited the existence of strong interactions between Na‐CMC and PAM and the non‐destructive effect of CNT on Na‐CMC/PAM structure. The HR‐TEM revealed the multi‐walled structure of CNT with a 7.06‐nm wall thickness and a 6.92‐nm wall inner diameter. Positron annihilation lifetime spectroscopy (PALS) was done, in a vacuum and at 30°C to 200°C, to investigate the nanoscale free volume properties by using a conventional fast‐fast coincidence spectrometer. It was found that the o‐Ps lifetime (τ3 ) and free volume (Vh) increase with increasing CNT percentage in the Na‐CMC/PAM blend. The distribution of the o‐Ps lifetime was broadened with increasing CNT ratios. Furthermore, the glass transition temperature (Tg) increases with increasing loads of CNT. For the first time, a correlation was done between Urbach energy (EU) and Vh. Finally, the results were represented and discussed in the frame of free volume properties. Optical measurements showed that the transmittance T% of Na‐CMC/PAM was 91.12% and decreased to 68.42% and 36.45% after loading with 1.0 and 2.0 wt % CNT. In addition, the blend shows higher insulating properties compared with the individual polymers. The CNT incorporation reduces the band gap significantly and increases the EU in the films.  相似文献   

14.
A multiwalled carbon nanotube (MWCNT) scaffold was covalently functionalized with a second‐generation polyamidoamine (PAMAM) dendron, presenting four terminal amino groups per grafted aryl moiety. These reactive functions were alkylated to obtain a positively charged polycationic dendron/carbon nanotube system ( d‐MWCNTs?Cl ), which eventually underwent anion exchange reaction with a negatively charged and highly luminescent EuIII complex ( [EuL4]?NEt4 , in which L =(2‐naphtoyltrifluoroacetonate)). This process afforded the target material d‐MWCNTs?[EuL4] , in which MWCNTs are combined with red‐emitting EuIII centers through electrostatic interactions with the dendronic branches. Characterization of the novel MWCNT materials was accomplished by means of TGA and TEM, whereas d‐MWCNTs?Cl and d‐MWCNTs? [EuL4] further underwent XPS, SEM and Raman analyses. These studies demonstrate the integrity of the luminescent [EuL4]? center in the luminescent hybrid, the massive load of the cationic binding sites, and the virtually complete anion‐exchange into the final hybrid material. The occurrence of the ion‐pairing interaction with MWCNTs was unambiguously demonstrated through DOSY NMR diffusion studies. Photophysical investigations show that MWCNTs?[EuL4] is a highly soluble and brightly luminescent red hybrid material in which MWCNTs act as photochemically inert scaffolds with negligible UV/Vis absorption, compared with the grafted Eu complex, and with no quenching activity. The high dispersibility of MWCNTs?[EuL4] in a polymer matrix makes it a promising luminophore for applications in material science.  相似文献   

15.
Carbon nanotubes (CNTs) are considered excellent materials for the construction of flexible displays due to their nanoscale dimensions and unique physical and chemical properties. By using the recognition properties of 2‐ureido‐4[1H]pyrimidinone (UPy), a versatile and simple methodology was demonstrated for the construction of macroscopic structures based on UPy‐CNT/polymer composites prepared by a combination of two functionalization approaches: 1) covalent attachment of UPy pendants on the multiwalled CNT surface ( UPy‐MWCNTs ) and 2) directed self‐assembly of UPy‐MWCNTs within polymers bearing UPy pendants ( Bis‐UPy 1 and Bis‐UPy 2 ) by quadruple complementary DDAA–AADD hydrogen‐bond recognition (D=donor, A=acceptor).  相似文献   

16.
Multi-walled carbon nanotube (MWCNT) reinforced polylactide (PLA) nanocomposites were injected molded into a mold with micro needle patterns. In order to alleviate the hesitation effect caused by an increased melt viscositgy of PLA/CNT nanocomposites, the effects of the injection speed and holding pressure on the replication property were investigated. The effects of MWCNTs on the crystallization, thermal behavior, replication properties, replication and surface properties of micro injection molded PLA/CNT nanocomposites were investigated. An analysis of crystallinity and thermal behavior indicated that the MWCNTs promoted the unique α’ to α crystal transition of PLA, leading to an enhancement of surface modulus and hardness, as measured using a nanoindentation technique. The specific interaction between PLA and MWCNTs was characterized using an equilibrium melting point depression technique. Furthermore, the MWCNTs increased the activation energy for thermal degradation of PLA due to the physical barrier effect. The improved replication quality of the microfeatures in the PLA/MWCNT nanocomposites has been achieved by elevating injection speed and holding pressure, which enhances the polymer filling ability within the micro cavity. A replication ratio greater than 96% for the micro injection molded PLA/CNT nanocomposites were achieved at holding pressure of 100 MPa and injection speed of 120 mm/s. This study shows that processing conditions significantly influence the replication and surface properties of micro injection molded PLA/CNT nanocomposites.  相似文献   

17.
The open edge reconstruction of half‐saturated (6,0) zigzag carbon nanotube (CNT) was introduced by density functional calculations. The multistep rearrangement was demonstrated as a regioselective process to generate a defective edge with alternating pentagons and heptagons. Not only the thermal stability was found to be enhanced significantly after reconstruction but also the total spin of CNT was proved to be reduced gradually from high‐spin septet to close‐shell singlet, revealing the critical role of deformed edge on the geometrical and magnetic properties of open‐ended CNTs. Kinetically, the initial transformation was confirmed as the rate‐determining step with relatively the largest reaction barrier and the following steps can take place spontaneously. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Carbon nanotubes (CNTs) were grown directly on the surface of carbon fibres, using the catalytic chemical vapour deposition. FeCo bimetallic catalysts were deposited on carbon fibres using a simple wet impregnation method. CNTs were synthesized over the prepared catalysts by the catalytic decomposition of acetylene at 750oC. The uniform CNT formation on the fibre surface was verified using scanning electron microscopy. Raman spectroscopy was employed to evaluate non‐destructively the CNT growth and the CNT quality. Thermo gravimetric analysis and differential thermal analysis were employed as destructive methods to confirm the spectroscopic data. Single CNT‐coated fibre fragmentation tests were performed to examine the interfacial shear strength (ISS) of the modified fibres. Acoustic emission was employed to monitor the fragmentation process in real time. Thus, the coated fibre structural integrity was assessed together with its stress transfer properties. Polarized optical microscopy was employed to cross validate the acoustic emission data. It was found that the ISS of the nanotube‐reinforced interphase was improved without affecting the fibre mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
《Electroanalysis》2017,29(3):778-786
NiCo2O4/CNT nanocomposite films were fabricated by in‐situ growing ultrafine NiCo2O4 nanoparticles on acid‐modified carbon nanotube (CNT) films. The effects of CNT‐film pretreatment were investigated thoroughly by various characterization outfits including Fourier Transform Infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, RTS‐9 four‐point probes resistivity measurement system, X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and CHI660D electrochemical workstation. These results suggested that carbon nanotubes were uniformly wrapped by NiCo2O4 nanoparticles forming a hierarchical core‐shell structure. And the crystallinity, conductivity of the CNTs and detail structure (both morphology and size) of the NiCo2O4 nanoparticles varied with prolonged acid treatment time which resulted in increased functional groups and defects on CNT films and further affected the electrochemical properties. The composite film composed of the CNT film pretreated by mixed acid for 12 h exhibited excellent electrochemical properties: 828 F/g at 1 A/g and 656 F/g at 20 A/g, and maintained over 99 % of its capacitance after 3000 cycles of charge/discharge at 5 A/g. Acid treatment for either too long or too short is detrimental to the electrochemical properties of the composite films. Such work should be of fundamental importance for tailoring electrochemical properties by elaborate design of acid treatment on CNTs.  相似文献   

20.
Electrochemical detection of dopamine (DA) in the presence of a large excess of ascorbic acid (AA) was investigated with a novel all‐carbon nanocomposite film of C60‐MWCNTs (C60‐functionalized multi‐walled carbon nanotubes) using a bare MWCNTs film as control. Although both films can selectively detect DA from AA by separating their oxidation potentials, the C60‐MWCNTs film shows special selectivity and good sensitivity for detecting DA. On one hand, the C60‐MWCNTs composite film shows a higher activity for DA oxidation with enhanced peak current. On the other hand, the C60‐MWCNTs composite film effectively suppresses the oxidation of AA. Remarkably, it is found that the oxidation current of DA is over 2 times higher than that of AA even when the concentration of AA is about 3 to 4 orders of magnitude higher than that of DA. This offers a tremendous advantage for the simple and clean detection of DA free of the interfering AA signal in a real assay. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectrometry are used to characterize the C60‐MWCNTs composite film. These novel properties are interpreted to arise from the facile electron transfer between C60 and MWCNTs in the C60‐MWCNTs nanocomposite film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号