首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkynyl gold(I) metallaligands [(AuC≡Cbpyl)2(μ‐diphosphine)] (bpyl=2,2′‐bipyridin‐5‐yl; diphosphine=Ph2P(CH2)nPPh2, [n=3 (LPr), 4 (LBu), 5 (LPent), 6 (LHex)], dppf (LFc), Binap (LBinap) and Diop (LDiop)) react with MX2 (M=Fe, Zn, X=ClO4; M=Co, X=BF4) to give triple helicates [M2(LR)3]X4. These complexes, except those containing the semirigid LBinap metallaligand, present similar hydrodynamic radii (determined by diffusion NMR spectroscopy measurements) and a similar pattern in the aromatic region of their 1H NMR spectra, which suggests that in solution they adopt a compact structure where the long and flexible organometallic strands are folded. The diastereoselectivity of the self‐assembly process was studied by using chiral metallaligands, and the absolute configuration of the iron(II) complexes with LBinap and LDiop was determined by circular dichroism spectroscopy (CD). Thus, (R)‐LBinap or (S)‐LBinap specifically induce the formation of (Δ,Δ)‐[Fe2((R)‐LBinap)3](ClO4)4 or (Λ,Λ)‐[Fe2((S)‐LBinap)3](ClO4)4, respectively, whereas (R,R)‐ or (S,S)‐LDiop give mixtures of the ΔΔ‐ and ΛΛ‐diastereomers. The ΔΔ helicate diastereomer is dominant in the reaction of FeII with (R,R)‐LDiop, whereas the ΛΛ isomer predominates in the analogous reaction with (S,S)‐LDiop. The photophysical properties of the new dinuclear alkynyl complexes and the helicates have been studied. The new metallaligands and the [Zn2(LR)3]4+ helicates present luminescence from [π→π*] excited states mainly located in the C≡Cbpyl units.  相似文献   

2.
The novel, dimeric titanium(IV )‐substituted phosphotungstate [(TiP2W15O55OH)2]14? ( 1 ) has been synthesized and characterized by IR and 31P NMR spectroscopy, elemental analysis, and single‐crystal Xray diffraction. The polyanion consists of two [P2W15O56]12? Wells–Dawson moieties linked through two titanium(IV ) centers. Polyanion 1 is a dilacunary species and represents the first Ti‐containing sandwich‐type structure. The titanium centers are octahedrally coordinated by three oxygen atoms of each P2W15O56 subunit. The edge‐shared TiO6 units are symmetrically equivalent and have no terminal ligands. Polyanion 1 shows a chiral distortion within each P2W15Ti fragment. We also report on the structural characterization of the tetrameric, supramolecular species [{Ti3P2W15O57.5(OH)3}4]24? ( 2 ). Polyanion 2 is composed of four equivalent P2W15Ti3 fragments, fused together through terminal Ti? O bonds, leading to a structure with Td symmetry.  相似文献   

3.
Taking advantage of an improved synthesis of [Ti(η6‐C6H6)2], we report here the first examples of ansa‐bridged bis(benzene) titanium complexes. Deprotonation of [Ti(η6‐C6H6)2] with nBuLi in the presence of N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (pmdta) leads to the corresponding 1,1′‐dilithio salt [Ti(η6‐C6H5Li)2] ? pmdta that enables the preparation of the first one‐ and two‐atom‐bridged complexes by simple salt metathesis. The ansa complexes were fully characterized (NMR spectroscopy, UV/Vis spectroscopy, elemental analysis, and X‐ray crystallography) and further studied electrochemically and computationally. Moreover, [Ti(η6‐C6H6)2] is found to react with the Lewis base 1,3‐dimethylimidazole‐2‐ylidene (IMe) to give the bent sandwich complex [Ti(η6‐C6H6)2(IMe)].  相似文献   

4.
Meso complex versus helicate : A naphthalene‐bridged bis(benzene‐o‐dithiol) ligand reacts with Ti4+ to give both dinuclear triple‐stranded meso complexes and helicates, depending on the counterion employed during synthesis. DFT calculations performed with a simplified complex revealed that the interconversion of Λ to its Δ enantiomer proceeds via a C3h‐symmetric transition state (see figure).

  相似文献   


5.
The neutral hexacoordinate silicon(IV) complex 6 (SiO2N4 skeleton) and the neutral pentacoordinate silicon(IV) complexes 7 – 11 (SiO2N2C skeletons) were synthesized from Si(NCO)4 and RSi(NCO)3 (R=Me, Ph), respectively. The compounds were structurally characterized by solid‐state NMR spectroscopy ( 6 – 11 ), solution NMR spectroscopy ( 6 and 10 ), and single‐crystal X‐ray diffraction ( 8 and 11 were studied as the solvates 8? CH3CN and 11? C5H12 ? 0.5 CH3CN, respectively). The silicon(IV) complexes 6 (octahedral Si‐coordination polyhedron) and 7 – 11 (trigonal‐bipyramidal Si‐coordination polyhedra) each contain two bidentate ligands derived from an α‐amino acid: (S)‐alanine, (S)‐phenylalanine, or (S)‐tert‐leucine. The deprotonated amino acids act as monoanionic ( 6 ) or as mono‐ and dianionic ligands ( 7 – 11 ). The experimental investigations were complemented by computational studies of the stereoisomers of 6 and 7 .  相似文献   

6.
Nanophases of J‐aggregates of several achiral amphiphilic porphyrins, which have thin long acicular shapes (nanoribbons), show the immediate and reversible formation of a stationary mechano‐chiral state in the solution by vortex stirring, as detected by their circular dichroic signals measured by 2‐modulator generallized ellipsometry. The results suggest that when a macroscopic chiral force creates supramolecular chirality, it also creates an enantiomeric excess of screw distortions, which may be detected by their excitonic absorption. An explanation on the effect of the shear flow gradients is proposed on the basis of the orientation of the rotating particles in the vortex and the size, shape, and mechanical properties of the nanoparticles.  相似文献   

7.
The spontaneous self‐assembly of a neutral circular trinuclear TiIV‐based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n‐pentane into a solution with dichloromethane. The circular helicate has been characterized by using single‐crystal X‐ray diffraction study, 13C CP‐MAS NMR and 1H NMR DOSY solution spectroscopic, and positive electrospray ionization mass‐spectrometric analysis. These analytical data were compared with those obtained from a previously reported double‐stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double‐stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double‐stranded helicates was characterized by ΔH(toluene)=?30 kJ mol?1 and ΔS(toluene)=+357 J K?1 mol?1, whereas these values were ΔH(CH2Cl2)=?75 kJ mol?1 and ΔS(CH2Cl2)=?37 J K?1 mol?1 for the ring helicate. The transformation of the ring helicate into the double‐stranded helicate was a strongly endothermic process characterized by ΔH(CH2Cl2)=+127 kJ mol?1 and ΔH(n‐pentane)=+644 kJ mol?1 associated with a large positive entropy change ΔS=+1115 J K?1?mol?1. Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n‐pentane. Suggestions for increasing the stability of the ring helicate are given.  相似文献   

8.
The aggregation of achiral sulfonatophenyl‐ and phenyl‐meso‐substituted diprotonated porphyrins to chiral J‐aggregates is a hierarchical noncovalent polymerization process preceded by a critical nucleation stage. This allows significant enantiomeric excesses by the formation of a few primary nuclei and the control of their growth by the effect that flows (imperfect mixing) have on the secondary nucleation of the J‐aggregate particles. In addition, the results strongly suggest that when only one species of aggregate predominates, the CD signals of the three excitonic bands in the visible region (around 420, 490, and 700 nm) show the same sign. Thus, differences on their relative sign would be due to the presence of different species.  相似文献   

9.
Four dinuclear terpyridineplatinum(II) (Pt–terpy) complexes were investigated for interactions with G‐quadruplex DNA (QDNA) and duplex DNA (dsDNA) by synchrotron radiation circular dichroism (SRCD), fluorescent intercalator displacement (FID) assays and fluorescence resonance energy transfer (FRET) melting studies. Additionally, computational docking studies were undertaken to provide insight into potential binding modes for these complexes. The complexes demonstrated the ability to increase the melting temperature of various QDNA motifs by up to 17 °C and maintain this in up to a 600‐fold excess of dsDNA. This study demonstrates that dinuclear Pt–terpy complexes stabilise QDNA and have a high degree of selectivity for QDNA over dsDNA.  相似文献   

10.
New functionalized, (a)chiral poly(phenylene‐alt‐bithiophene)s were prepared and their chiroptical properties were studied. The polymers were prepared by a Stille coupling reaction and were functionalized with protected carboxylic acid and amino functions (tert‐butyl ester and BOC respectively). The polymers are present as well conjugated rigid rods in solution, which (chirally) aggregate in nonsolvents and film. In a next step, the protecting group (tert‐butyl ester in case of the carboxylic acid) was removed. Aggregation of this polymer can be induced by addition of amines; if chiral amines are used, the polymer chains chirally stack. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4817–4829, 2008  相似文献   

11.
12.
13.
14.
15.
16.
A combination of self‐complementary hydrogen bonding and metal–ligand interactions allows stereocontrol in the self‐assembly of prochiral ligand scaffolds. A unique, non‐tetrahedral M4L6 structure is observed upon multicomponent self‐assembly of 2,7‐diaminofluorenol with 2‐formylpyridine and Fe(ClO4)2. The stereochemical outcome of the assembly is controlled by self‐complementary hydrogen bonding between both individual ligands and a suitably sized counterion as template. This hydrogen‐bonding‐mediated stereoselective metal–ligand assembly allows the controlled formation of nonsymmetric discrete cage structures from previously unexploited ligand scaffolds.  相似文献   

17.
18.
19.
Photochromic diarylethene derivatives having different lengths and numbers of poly(ethylene glycol) side chains were synthesized and their photochromic property and self‐assembling behavior were investigated. The self‐assembling behavior of the derivatives strongly depends upon the ratio between the hydrophobic core and the amphiphilic side chain. According to UV/Vis absorption spectroscopy, CD spectroscopy, and dynamic light scattering experiments, these derivatives showed different size distribution of the assembled structures and different solubility in water. The intensity of the induced CD signal, which was observed in the closed‐ring isomer, was the largest for the molecule having two hexaethylene glycol side chains. The relationship between the core‐chain ratio and regularity of the self‐assembled structure has been investigated.  相似文献   

20.
Combining experiment with theory reveals the role of self‐assembly and complexation in metal‐ion transfer through the water–oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X‐ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long‐range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu3+–3(NO3?) ion pairs involves incorporation of the “hard” metal complex into the core of “soft” aggregates. This seeds the formation of reverse micelles that draw the water and “free” amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod‐shaped polynuclear EuIII‐containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O‐donor ligands and anions, provide improved EuIII solvation environments that help drive interfacial transfer, as is reflected by the increasing EuIII partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal‐ion coordination with nanoscale structure to reveal the free‐energy balance that drives the phase transfer of neutral metal salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号