首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The synthesis of an all‐halogen‐bonding rotaxane for anion recognition is achieved by using active‐metal templation. A flexible bis‐iodotriazole‐containing macrocycle is exploited for the metal‐directed rotaxane synthesis. Endotopic binding of a CuI template facilitates an active‐metal CuAAC iodotriazole axle formation reaction that captures the interlocked rotaxane product. Following copper‐template removal, exotopic coordination of a more sterically demanding rhenium(I) complex induces an inversion in the conformation of the macrocycle component, directing the iodotriazole halogen‐bond donors into the rotaxane’s interlocked binding cavity to facilitate anion recognition.  相似文献   

2.
The synthesis, structure and anion binding properties of the first calix[4]arene‐based [2]rotaxane anion host systems are described. Rotaxanes 9? Cl and 12? Cl, consisting of a calix[4]arene functionalised macrocycle wheel and different pyridinium axle components, are prepared via adaption of an anion templated synthetic strategy to investigate the effect of preorganisation of the interlocked host’s binding cavity on anion binding. Rotaxane 12? Cl contains a conformationally flexible pyridinium axle, whereas rotaxane 9? Cl incorporates a more preorganised pyridinium axle component. The X‐ray crystal structure of 9? Cl and solution phase 1H NMR spectroscopy demonstrate the successful interlocking of the calix[4]arene macrocycle and pyridinium axle components in the rotaxane structures. Following removal of the chloride anion template, anion binding studies on the resulting rotaxanes 9? PF6 and 12? PF6 reveal the importance of preorganisation of the host binding cavity on anion binding. The more preorganised rotaxane 9? PF6 is the superior anion host system. The interlocked host cavity is selective for chloride in 1:1 CDCl3/CD3OD and remains selective for chloride and bromide in 10 % aqueous media over the more basic oxoanions. Rotaxane 12? PF6 with a relatively conformationally flexible binding cavity is a less effective and discriminating anion host system although the rotaxane still binds halide anions in preference to oxoanions.  相似文献   

3.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

4.
In the tridentate ligand 2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine, C23H19N7, both sets of triazole N atoms are anti with respect to the pyridine N atom, while in the copper complex aqua[2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine](pyridine)(tetrafluoroborato)copper(II) tetrafluoroborate, [Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4, the triazole N atoms are in the synsyn conformation. The coordination of the CuII atom is distorted octahedral. The ligand structure is stabilized through intermolecular C—H...N interactions, while the crystal structure of the Cu complex is stabilized through water‐ and BF4‐mediated hydrogen bonds. Photoluminiscence studies of the ligand and complex show that the ligand is fluorescent due to triazole–pyridine conjugation, but that the fluorescence is quenched on complexation.  相似文献   

5.
A rotaxane‐based Au catalyst was developed and the effect of the mechanical bond on its behavior was studied. Unlike the non‐interlocked thread, the rotaxane requires a catalytically innocent cofactor, the identity of which significantly influences both the yield and diastereoselectivity of the reaction. Under optimized conditions, AuI (the catalyst), AgI (to abstract the Cl? ligand), and CuI (the cofactor) combine to produce a catalyst with excellent activity and selectivity.  相似文献   

6.
The crystal structure of the title compound, chloro(1,10‐phenanthroline‐N,N′)(1‐phenyl‐1,3‐butane­dion­ato‐O,O′)copper(II), [CuCl(C10H9O2)(C12H8N2)], has been determined. The CuII ion displays a distorted square‐pyramidal coordination, being linked to the two O atoms of the benzoyl­acetonate ligand and the two N atoms of the 1,10‐phenanthroline ligand in the basal plane, and the Cl atom in the apical site. TheCu—N, Cu—O and Cu—Cl bond lengths are 2.043 (2)/2.025 (2), 1.914 (2)/1.941 (2) and 2.485 (1) Å, respectively.  相似文献   

7.
New dibenzo[24]crown‐8 ether derivatives were prepared that contain appendages with thioether donors that can coordinate to a metal ion. These macrocycles were then combined with 1,2‐bis(pyridinium) ethane axles to create two types of [2]rotaxane ligands; those with the four thioether donors on the crown ether and those with six donor groups, four from the crown ether and two more attached to the stoppering groups of the dumbbell. The crown ethers and both types of [2]rotaxane ligands were allowed to react with AgI ions to form metal‐organic rotaxane framework (MORF) style coordination polymers. The interlocked hexadentate ligand forms the first example of a new type of lattice containing interwoven frameworks resulting from both interpenetration of frameworks due to the presence of an interlocked ligand and more classical interpenetration of independent frameworks.  相似文献   

8.
The present structure determination of di‐μ‐hydroxo‐bis{[N,N′‐bis­(dipiperidino­methyl­ene)­propane‐1,3‐di­amine‐κ2N,N′]copper(II)} bis­(hexa­fluoro­phosphate), [Cu2(OH)2(C25H46N6)2](PF6)2, is the first to crystallographically characterize a Cu2(μ‐OH)2 complex with a bidentate guanidine ligand. The cation lies on a crystallographic inversion centre and shows planar fourfold coordination of the copper centres. The Cu2(μ‐OH)2 species can be distinguished from Cu2(μ‐O)2 by the Cu—O bond lengths. The packing is determined by strong intermolecular anion–cation hydrogen bonds.  相似文献   

9.
Crystals of the title π‐complex, [Cu4Cl6(C8H11N2)2]n, were obtained by means of alternating‐current electrochemical synthesis. The structure consists of infinite copper–chlorine chains to which 1‐allyl‐3‐amino­pyridinium moieties are attached via a η2 Cu—(C=C) interaction. The two independent Cu atoms have distinct coordination environments. One is three‐coordinate, surrounded by two chloro ligands and the olefinic bond, whereas the second copper center is surrounded by a tetrahedral arrangement of four Cl atoms. The lower basicity of 3‐amino­pyridine as compared with 2‐ and 4‐amino­pyridine lowers the capacity of the organic ligand for donating to N—H⋯Cl hydrogen bonds and results in the formation of a large inorganic fragment.  相似文献   

10.
The reaction of 2,2′‐Bis(2N‐(1,1′,3,3′‐tetramethyl‐guanidino))diphenylene‐amine (TMG2PA) ( 1 ) with CuI in MeCN results in the formation of [CuII(TMG2PAamid)I] ( 2 ) indicatingthat CuI is the target of an oxidative attack of the N‐H proton of the ligand which itself is converted to molecular hydrogen. In contrast, if [Cu(MeCN)4][PF6] is used as the CuI source, [CuI2(TMGbenz)2][PF6]2 ( 3 ) is obtained instead. The use of the non‐coordinating counterion [PF6] apparently prevents CuI from oxidation but induces itself a cyclisation reaction within the ligand which results in the formation of a benzimidazole‐guanidine ligand.  相似文献   

11.
In the title compound, [Cu(C7H3N2O4)(C4H5N2)(H2O)], (I), pyridine‐2,6‐dicarboxylate (pydc2−), 2‐aminopyrimidine and aqua ligands coordinate the CuII centre through two N atoms, two carboxylate O atoms and one water O atom, respectively, to give a nominally distorted square‐pyramidal coordination geometry, a common arrangement for copper complexes containing the pydc2− ligand. Because of the presence of Cu...Xbridged contacts (X = N or O) between adjacent molecules in the crystal structures of (I) and three analogous previously reported compounds, and the corresponding uncertainty about the effective coordination number of the CuII centre, density functional theory (DFT) calculations were used to elucidate the degree of covalency in these contacts. The calculated Wiberg and Mayer bond‐order indices reveal that the Cu...O contact can be considered as a coordination bond, whereas the amine group forming a Cu...N contact is not an effective participant in the coordination environment.  相似文献   

12.
In the title compound, [Cu(C10H4O8)(C12H8N2)]n, the CuII cation has a four‐coordination environment completed by two N atoms from one 1,10‐phenanthroline (phen) ligand and two O atoms belonging to two di­hydrogen benzene‐1,2,4,5‐­tetra­carboxyl­ate anions (H2TCB2−). There is a twofold axis passing through the CuII cation and the centre of the phen ligand. The [Cu(phen)]2+ moieties are bridged by H2TCB2− anions to form an infinite one‐dimensional coordination polymer with a zigzag chain structure along the c axis. A double‐chain structure is formed by hydrogen bonds between adjacent zigzag chains. Furthermore, there are π–π stacking inter­actions between the phen ligands, with an average distance of 3.64 Å, resulting in a two‐dimensional network structure.  相似文献   

13.
Luminescent CuI complexes have emerged as promising substitutes for phosphorescent emitters based on Ir, Pt and Os due to their abundance and low cost. The title heteroleptic cuprous complex, [9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)‐9H‐xanthene‐κ2P ,P ](2‐methylquinolin‐8‐ol‐κ2N ,O )copper(I) hexafluorophosphate, [Cu(C10H9NO)(C39H32OP2)]PF6, conventionally abbreviated as [Cu(Xantphos)(8‐HOXQ)]PF6, where Xantphos is the chelating diphosphine ligand 9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)‐9H‐xanthene and 8‐HOXQ is the N ,O‐chelating ligand 2‐methylquinolin‐8‐ol that remains protonated at the hydroxy O atom, is described. In this complex, the asymmetric unit consists of a hexafluorophosphate anion and a whole mononuclear cation, where the CuI atom is coordinated by two P atoms from the Xantphos ligand and by the N and O atoms from the 8‐HOXQ ligand, giving rise to a tetrahedral CuP2NO coordination geometry. The electronic absorption and photoluminescence properties of this complex have been studied on as‐synthesized samples, whose purity had been determined by powder X‐ray diffraction. In the detailed TD–DFT (time‐dependent density functional theory) studies, the yellow emission appears to be derived from the inter‐ligand charge transfer and metal‐to‐ligand charge transfer (M +L ′)→LCT excited state (LCT is ligand charge transfer).  相似文献   

14.
A new complex of copper(II) picrate (pic) with 1, 3‐bis(1‐allaylbenzimidazol‐2‐yl)‐2‐oxopropane (aobb), with the composition [Cu(aobb)2](pic)2, was synthesized and characterized. The crystal structure of the copper(II) complex revealed that the coordination environment around the central copper(II) atom is a distorted octahedral arrangement. Electronic absorption spectroscopy, ethidium bromide displacement experiments and viscosity measurements indicate that the ligand and the CuII complex can strongly bind to calf thymus DNA, presumably by an intercalation mechanism. Furthermore, the antioxidant activity of the CuII complex was determined by superoxide and hydroxyl radical scavenging method in vitro, which indicate that the CuII complex has the activity to suppress OH · and O2 · –.  相似文献   

15.
The title compound, [Cu4Cl6O(C5H9N3)3(NH3)], is a neutral conformationally chiral cluster which crystallizes under the conditions described in this paper as a racemic conglomerate. It contains four CuII atoms in a tetrahedral coordination with a central O atom lying on a crystallographic threefold axis. Six chloride anions bridge the four CuII atoms. Three CuII atoms are bound by an N atom of a monodentate 1,4,6‐triazabicyclo[3.3.0]oct‐4‐ene (Htbo) ligand and the remaining CuII atom is bound by a terminal ammine ligand. The geometry at each copper center is trigonal bipyramidal, produced by the bound N atom of Htbo or ammonia, the O atom in the axial position, and three chloride ions in the equatorial plane. The chloride anions form an octahedron about the oxygen center. The copper–ammonia bond lies along the crystallographic threefold axis, along which the molecules are packed in a polar head‐to‐tail fashion.  相似文献   

16.
The topological diversity of DNA G‐quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol‐based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid‐phase synthesis. Square‐planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal–base tetrad, substituting one G‐tetrad in the parent unimolecular G‐quadruplex. For the Tetrahymena telomeric repeat, CuII‐triggered switching from a hybrid‐dominated conformer mixture to an antiparallel topology was observed. CuII‐dependent control over a protein–G‐quadruplex interaction was shown for the thrombin–tba pair (tba=thrombin‐binding aptamer).  相似文献   

17.
A ligand‐controlled system that enables regioselective trifluoromethylcyanation of 1,3‐enynes has been identified, which provides access to a variety of CF3‐containing tri‐ and tetrasubstituted allenyl nitriles. We disclose that the involved propargylic radicals can be selectively trapped by (Box)CuII cyanide, while the tautomerized allenyl radicals are trapped by (phen)CuII cyanide (Box= bisoxazoline, phen=phenanthroline). In addition, the reaction features broad substrate scope and excellent functional group compatibility. Moreover, this protocol represents a novel regioselectivity‐tunable functionalization of 1,3‐enynes via radicals, which we believe will have great implications for the development of catalytic systems for selectivity control in radical and organometallic chemistry.  相似文献   

18.
The synthesis and anion‐recognition properties of the first halogen‐bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen‐bonding axle component, which is stoppered with water‐solubilizing permethylated β‐cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)‐based macrocycle component. 1H NMR anion‐binding titrations in D2O reveal the halogen‐bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free‐energy calculations. Photo‐physical investigations demonstrate the ability of the interlocked halogen‐bonding host to sense iodide in water, through enhancement of the macrocycle component’s RuII metal–ligand charge transfer (MLCT) emission.  相似文献   

19.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

20.
The title compound, poly[μ3‐bromido‐(pyridine‐3‐carboxylato‐κN)copper(I)], [CuBr(C6H5NO2)]n, is a novel coordination polymer based on a copper–bromide net and nicotinic acid ligands. The asymmetric unit contains one copper(I) ion, one bromide ligand and one nicotinic acid ligand, all on general positions. The CuI atom is tetrahedral and coordinated by three bridging Br atoms and the N atom from the nicotinic acid ligand. The Cu–Br units form alternating six‐membered chair‐patterned rings in net‐like layers. The attached nicotinic acid units point alternately up and down. The layers are assembled into a three‐dimensional network via intermolecular O—H...O and C—H...Br hydrogen‐bonding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号