首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel metal‐free composite (GN) composed of two types of carbon‐based nanomaterials, graphite oxide (GO) and 2D oxidized carbon nitride (OCN) nanodots was produced. Chemical and morphological characterizations reveal that GN contains a main component of GO with well‐dispersed 2D OCN nanodots. GN shows enhanced photocatalytic performance for degrading an organic pollutant, Rhodamine B, under visible light.  相似文献   

2.
We show how the redox potentials of carbon nanodots (CNDs) can be modulated by employing quinones as electroactive precursors during a microwave‐assisted synthesis. We prepared and characterized a redox library of CNDs, demonstrating that this approach can promote the use of carbon nanodots for ad hoc applications, including photocatalysis.  相似文献   

3.
We report a rational synthesis of carbon nanodots (CNDs) aimed at tailoring their emission, starting from a reasoned choice of organic precursors. To showcase the potential of this approach in a field such as optoelectronics, we designed experiments aimed at preparing materials that emit across the entire visible spectrum. Specifically, using precursors such as arginine, ethylenediamine, naphthalene dianhydride, and 2,6‐dibromonaphtalene dianhydride, in appropriate ratios, it was possible to obtain pure white‐light (0.33, 0.33; CIE coordinates) emitting carbon nanodots (WCNDs) through a one‐step microwave‐assisted synthesis and facile purification. The characterization and properties of this novel nanomaterial is discussed.  相似文献   

4.
Graphitic carbon nitride nanodots (g‐C3N4 nanodots), as a new kind of heavy‐metal‐free quantum dots, have attracted considerable attention because of their unique physical and chemical properties. Although various methods to obtain g‐C3N4 nanodots have been reported, it is still a challenge to synthesize g‐C3N4 nanodots with ultrahigh fluorescence quantum yield (QY). In this study, highly fluorescent phosphorus/oxygen‐doped graphitic carbon nitride (P,O‐g‐C3N4) nanodots were prepared by chemical oxidation and hydrothermal etching of bulk P‐g‐C3N4 derived from the pyrolysis of phytic acid and melamine. The as‐prepared P,O‐g‐C3N4 nanodots showed strong blue fluorescence and a relatively high QY of up to 90.2 %, which can be ascribed to intrinsic phosphorus/oxygen‐containing groups, and surface‐oxidation‐related fluorescence enhancement. In addition, the P,O‐g‐C3N4 nanodots were explored for cell imaging with excellent stability and biocompatibility, which suggest that they have great potential in biological applications.  相似文献   

5.
为探讨微波法制备纳米碳点发光性质的影响规律与本质,采用微波加热法通过控制微波功率、反应时间以及pH值合成了一系列纳米碳点,并利用荧光激发光谱与发射光谱测试对纳米碳点的发光性质进行了表征,结合紫外吸收光谱与傅立叶红外光谱对反应产物官能团变化分析,最终揭示了微波加热过程中葡萄糖向纳米碳点转变的机制与发光机理。结果表明,采用微波法制备纳米碳点,当微波功率为560 W,反应时间为2.5 min时,获得纳米碳点发光性能最佳。当采用波长370 nm紫外光激发时,对应451 nm的蓝光发射强度最高。伴随纳米碳点溶液pH值从酸性变为碱性,纳米碳点最强发光峰的激发光波长由350 nm显著向高波长方向移动,且发光峰强度显著升高。紫外吸收光谱与傅立叶红外光谱显示反应过程中形成了多环芳香族碳氢化合物,表明微波加热过程中是葡萄糖单糖向多糖聚合并最终发生碳化的过程。不同pH值下纳米碳点发光性质的差异,源于对纳米碳点中C=C键与C=O键比例的调整,从而实现对纳米碳点的光学带隙宽度及激子束缚能等的综合调控。  相似文献   

6.
邓祥  黄小梅  祁文静  吴狄 《分析化学》2016,(12):1880-1886
以玛卡为碳源,采用水热法制备荧光碳点。碳点水溶液在激发波长为315 nm时,最大荧光发射波长为425 nm。在玛卡荧光碳点的磷酸盐缓冲液(0.2 mol/L,pH 5.8)中,加入苦味酸,其荧光被猝灭,基于此建立了以玛卡荧光碳点为荧光探针测定苦味酸的方法。本方法检测苦味酸的线性范围为0.4~80 mmol/L,相关系数为0.9978,检出限为110 nmol/L(S/N=3),本方法线性范围宽、灵敏度高、响应快(2 min内),选择性和抗干扰能力良好。用于实际水样中苦味酸的检测,加标回收率为92.0%~110.0%,结果令人满意。  相似文献   

7.
作为以碳为骨架结构的新型纳米材料,碳点具有许多优良的性能,如发射波长可调、良好的光稳定性、抗光漂白、良好的水溶性以及易于生物偶联等. 正是因为这些优点,碳点和其它碳质纳米材料(富勒烯、碳纳米管、石墨烯)一样受到了广泛的关注. 电化学方法制备碳点具有条件温和、费用低廉、后处理简单等特点. 另外,电化学方法在材料的表面结构分析以及发光机理的研究中也有其独特的优势. 本文即就电化学方法在荧光碳点的制备以及发光机理探讨中的应用作了综述,并简略介绍了碳点在传感器中的应用,提出了优化电化学方法制备碳点的某些设想.  相似文献   

8.
Three‐dimensional (3D) carbon nitride (C3N4)‐based materials show excellent performance in a wide range of applications because of their suitable band structures. To realize the great promise of two‐dimensional (2D) allotropes of various 3D materials, it is highly important to develop routes for the production of 2D C3N4 materials, which are one‐atom thick, in order to understand their intrinsic properties and identify their possible applications. In this work, water‐dispersible, atomically thin, and small carbon nitride nanodots were produced using the chemical oxidation of graphitic C3N4. Various analyses, including X‐ray diffraction, X‐ray photoelectron, Fourier‐transform infrared spectroscopy, and combustion‐based elemental analysis, and thermogravimetric analysis, confirmed the production of 3D oxidized C3N4 materials. The 2D C3N4 nanodots were successfully exfoliated as individual single layers; their lateral dimension was several tens of nanometers. They showed strong photoluminescence in the visible region as well as excellent performances as cell‐imaging probes in an in vitro study using confocal fluorescence microscopy.  相似文献   

9.
The present study demonstrates the development of a supramolecular porous ensemble consisting of hetero‐oligophenylene derivative 6 and Au‐Fe3O4 nanodots. Supramolecular assemblies of AIE‐active hetero‐oligophenylene derivative 6 served as reactors for the generation of Au‐Fe3O4 nanodots. The as prepared supramolecular ensemble functioned as an efficient recyclable photocatalytic system for C(sp2)?H bond activation of anilines for the construction of quinoline carboxylates. Interestingly, the “dip catalyst” prepared by depositing PTh‐co‐PANI‐6: Au‐Fe3O4 nanodots on a filter paper served as a recyclable strip (up to 10 cycles) for C?C/C?N bond formation reaction.  相似文献   

10.
We report the synthesis and electron donor–acceptor features of a novel nanohybrid, in which the light‐harvesting and electron‐donating properties of a meso ‐tetraarylporphyrin (TArP) are combined with the electron‐accepting features of nitrogen‐doped carbon nanodots (NCNDs). In particular, in an ultrafast process (>1012 s−1), visible‐light excitation transforms the strongly quenched porphyrin singlet excited states into short‐lived (225 ps) charge‐separated states. On the other hand, ultraviolet light excitation triggers a non‐resolvable transduction of singlet excited state energy from the NCNDs to the porphyrins, followed by the same charge separation observed upon visible light excitation.  相似文献   

11.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium‐ion batteries (LIBs) but remains challenging. A space‐confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs?C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs?C framework demonstrates a remarkable comprehensive performance comparable to other Si‐based high‐performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   

12.
Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel “turn‐on” carbon‐dot‐based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave‐assisted method and exhibit red fluorescence (λem=615 nm) with high quantum yields (15 %). Then, an on–off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation‐induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs–GSH mixture could behave as an off–on fluorescent probe for temperature. Thus, red‐emitting CNDs can be utilized for “turn‐on” fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3‐E1 cells as an example model to demonstrate the red‐emitting CNDs can function as “non‐contact” tools for the accurate measurement of temperature and its gradient inside a living cell.  相似文献   

13.
Amine‐rich nitrogen‐doped carbon nanodots (NCNDs) have been successfully used as co‐reactant in electrochemiluminescence (ECL) processes. Primary or tertiary amino groups on NCNDs have been studied as co‐reactant sites for Ru(bpy)32+ ECL, showing their eligibility as powerful alternatives to tripropylamine (TPrA). We also report the synthesis and ECL behavior of a new covalently linked hybrid of NCNDs and Ru(bpy)32+. Notably, the NCNDs in the hybrid act both as carrier for ECL labels and as co‐reactant for ECL generation. As a result, the hybrid shows a higher ECL emission as compared to the combination of the individual components, suggesting the self‐enhancing ECL of the ruthenium complex due to an intramolecular electron transfer process.  相似文献   

14.
Carbon nanodots (CNDs) were synthesized using low‐cost and biocompatible starting materials such as citric acid/urea, under microwave irradiation, and constant pressure conditions. The obtained pressure‐synthesized CNDs (pCNDs) were covalently modified with photo‐ and electroactive π‐extended tetrathiafulvalene (exTTF) by means of a two‐step esterification reaction, affording pCND‐exTTF. The electronic interactions between the pCNDs and exTTF were investigated in the ground and excited states. Ultrafast pump–probe experiments assisted in corroborating that charge separation governs the deactivation of photoexcited pCND‐exTTF. These size‐regular structures, as revealed by AFM, are stable electron donor–acceptor conjugates of interest for a better understanding of basic processes such as artificial photosynthesis, catalysis, and photovoltaics, involving readily available fluorescent nanodots.  相似文献   

15.
Weak van der Waals interactions between interlayers of two‐dimensional layered materials result in disabled across‐interlayer electron transfer and poor layered structural stability, seriously deteriorating their performance in energy applications. Herein, we propose a novel covalent assembly strategy for MoS2 nanosheets to realize unique MoS2/SnS hollow superassemblies (HSs) by using SnS nanodots as covalent linkages. The covalent assembly based on all‐inorganic and carbon‐free concept enables effective across‐interlayer electron transfer, facilitated ion diffusion kinetics, and outstanding mechanical stability, which are evidenced by experimental characterization, DFT calculations, and mechanical simulations. Consequently, the MoS2/SnS HSs exhibit superb rate performance and long cycling stability in lithium‐ion batteries, representing the best comprehensive performance in carbon‐free MoS2‐based anodes to date. Moreover, the MoS2/SnS HSs also show excellent sodium storage performance in sodium‐ion batteries.  相似文献   

16.
In this work, we report the synthesis of holmium(III)-doped carbon nanodots(Ho BCDs) as fluorescence/magnetic resonance(FL/MR) dual-modal imaging probes via a facile hydrothermal process using citrate acid(CA), branched-polyethylenimine(BPEI) and diethylenetriamine pentaacetic acid hydrate holmium(III) dihydrogen salt(Ho-DTPA) as carbon source, passivating reagent and holmium source, respectively.The thus prepared Ho BCDs exhibited ultra-small particle size(~4 nm), high water solubility and bright fluorescence with an absolute quantum yield of 8%. Additionally, grey-scaled T_1-weighted images of Ho BCDs solution appeared to be apparently brighter than that of deionized water and un-doped blue carbon nanodots(BCDs) solution. In addition, in vitro toxicity assay validated superior biocompatibility of Ho BCDs. Using He La cells as models, Ho BCDs-treated cells were observed to emit blue fluorescence located both in plasma and nucleus, and presented positive contrast enhancement in T_1-weighted images, suggesting their potentials for practical biomedical applications.  相似文献   

17.
Journal of Analytical Chemistry - A new strategy for the determination of picolinic acid (PLA) is developed by utilizing green-emissive boron and nitrogen co-doped carbon nanodots (BNCNDs) and Cu2+...  相似文献   

18.
A facile bottom‐up approach to carbon nanodots (CNDs) is reported, using a microwave‐assisted procedure under controlled conditions. The as‐prepared nitrogen‐doped CNDs (NCNDs) show narrow size‐distribution, abundant surface traps and functional groups, resulting in tunable fluorescent emission and excellent solubility in water. Moreover, we present a general method for the separation of NCNDs by low‐pressure size‐exclusion chromatography, leading to an even narrower size distribution, different surface composition, and optical properties. They display among the smallest size and the highest FLQYs reported so far. 13C‐enriched starting materials produced N13CNDs suitable for thorough NMR studies, which gave useful information on their molecular structure. Moreover, they can be easily functionalized and can be used as water‐soluble carriers. This work provides an avenue to size‐ and surface‐controllable and structurally defined NCNDs for applications in areas such as optoelectronics, biomedicine, and bioimaging.  相似文献   

19.
《中国化学快报》2021,32(9):2919-2922
To prevent polysulfides from dissolution into electrolyte, we propose a novel and simple approach to nitrogen-doped carbon foams which contain hierarchically porous structure and are decorated with zinc nanodots through one-pot carbonization and activation process. These carbon foams, which serve as hosts for sulfur in lithium battery, can provide a conducting network and shorter diffusion length for Li-ions. Specially, the zinc nanodots derived from the carbothermal reaction of ZnCl2 at high temperature can interact with sulfur/polysulfides by strong chemisorption. In addition, the zinc nanodots can also facilitate the conversion reaction between Li2Sx (2 < x < 8) and Li2S/Li2S2. Therefore, Zn@NCFs/S cathode presents high sulfur utility and large capacity.  相似文献   

20.
A facile bottom‐up approach to carbon nanodots (CNDs) is reported, using a microwave‐assisted procedure under controlled conditions. The as‐prepared nitrogen‐doped CNDs (NCNDs) show narrow size‐distribution, abundant surface traps and functional groups, resulting in tunable fluorescent emission and excellent solubility in water. Moreover, we present a general method for the separation of NCNDs by low‐pressure size‐exclusion chromatography, leading to an even narrower size distribution, different surface composition, and optical properties. They display among the smallest size and the highest FLQYs reported so far. 13C‐enriched starting materials produced N13CNDs suitable for thorough NMR studies, which gave useful information on their molecular structure. Moreover, they can be easily functionalized and can be used as water‐soluble carriers. This work provides an avenue to size‐ and surface‐controllable and structurally defined NCNDs for applications in areas such as optoelectronics, biomedicine, and bioimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号