首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dehydrocoupling/dehydrogenation behavior of primary arylamine–borane adducts ArNH2 ? BH3 ( 3 a – c ; Ar= a : Ph, b : p‐MeOC6H4, c : p‐CF3C6H4) has been studied in detail both in solution at ambient temperature as well as in the solid state at ambient or elevated temperatures. The presence of a metal catalyst was found to be unnecessary for the release of H2. From reactions of 3 a , b in concentrated solutions in THF at 22 °C over 24 h cyclotriborazanes (ArNH‐BH2)3 ( 7 a , b ) were isolated as THF adducts, 7 a , b? THF, or solvent‐free 7 a , which could not be obtained via heating of 3 a – c in the melt. The μ‐(anilino)diborane [H2B(μ‐PhNH)(μ‐H)BH2] ( 4 a ) was observed in the reaction of 3 a with BH3?THF and was characterized in situ. The reaction of 3 a with PhNH2 ( 2 a ) was found to provide a new, convenient method for the preparation of dianilinoborane (PhNH)2BH ( 5 a ), which has potential generality. This observation, together with further studies of reactions of 4 a , 5 a , and 7 a , b , provided insight into the mechanism of the catalyst‐free ambient temperature dehydrocoupling of 3 a – c in solution. For example, the reaction of 4 a with 5 a yields 6 a and 7 a . It was found that borazines (ArN‐BH)3 ( 6 a – c ) are not simply formed via dehydrogenation of cyclotriborazanes 7 a – c in solution. The transformation of 7 a to 6 a is slowly induced by 5 a and proceeds via regeneration of 3 a . The adducts 3 a – c also underwent rapid dehydrocoupling in the solid state at elevated temperatures and even very slowly at ambient temperature. From aniline–borane derivative 3 c , the linear iminoborane oligomer (p‐CF3C6H4)N[BH‐NH(p‐CF3C6H4)]2 ( 11 ) was obtained. The single‐crystal X‐ray structures of 3 a – c , 5 a , 7 a , 7 b? THF, and 11 are discussed.  相似文献   

2.
We present herein a personal account of our achievements in the development of novel catalytic systems based on late‐transition‐metal complexes for the hydroarylation of alkynes. In particular, our targets were intermolecular hydroarylation reactions with arene or heteroarene substrates devoid of directing groups. We have shown that complexes of palladium, platinum or gold with N‐heterocyclic carbene (NHC) ligands can be particularly useful catalysts for this reaction; the NHC ligand imparts greater stability to the complex and renders the catalytic system more productive. Furthermore, we have identified promoters and reaction media that allow to significantly improve the catalytic activity under mild conditions, to control the reaction chemoselectivity and to steer it towards more complex products; thus making this reaction considerably more attractive for the synthetic chemist.

  相似文献   


3.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

4.
We report the synthesis of structurally tunable boron complexes supported by N‐heterocyclic imine ligands IPr=N?BR2 (IPr=[(HCNDipp)2C], Dipp=2,6‐iPr2C6H3, R=Cl and/or Ph) that have the ability to abstract dihydrogen from amine‐boranes, and instigate their dehydrocoupling. In one instance, mild heating of the hydrogen addition product IPr=NH?B(Ph)HCl releases H2 to regenerate the starting N‐heterocyclic iminoborane; accordingly IPr=N?B(Ph)Cl can be used as a metal‐free catalyst to promote the dehydrocoupling of MeNH2 ? BH3 to yield N‐methylaminoborane oligomers [MeNH‐BH2]x.  相似文献   

5.
9,10‐(Bpin)2‐anthracene ( 3 , HBpin=pinacolborane) was synthesized from 9,10‐dibromoanthracene in a stepwise lithiation/borylation sequence. The reaction of 3 with highly activated magnesium furnished the diborylated magnesium anthracene 4 , which was quenched in situ with ethereal HCl to yield cis‐9,10‐(Bpin)2‐DHA (cis‐ 5 , DHA=9,10‐dihydroanthracene). Compound cis‐ 5 , in turn, can be reduced with Li[AlH4] in THF to give its diborate Li2[cis‐9,10‐(BH3)2‐DHA] (Li2[cis‐ 6 ]). In the crystal lattice, the THF solvate Li2[cis‐ 6 ] ? 3 THF establishes a dimeric structure with Li‐(μ‐H)‐B coordination modes. Hydride abstraction from Li2[cis‐ 6 ] with Me3SiCl yields the B?H?B‐bridged DHA Li[ 7 ]. This product can also be viewed as a unique cyclic B2H7? derivative with a hydrocarbon backbone. Treatment of Li2[cis‐ 6 ] with the stronger hydride abstracting agent Me3SiOTf (HOTf=trifluoromethanesulfonic acid) in THF affords the THF diadduct of cis‐9,10‐(BH(OTf))2‐DHA.  相似文献   

6.
7.
Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition‐metal hydride complexes are limited to the Groups 7–12. Here we present evidence for the formation of Mg3CrH8, containing the first Group 6 hydride complex [CrH7]5?. Our theoretical calculations reveal that pentagonal‐bipyramidal H coordination allows the formation of σ‐bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group 3–5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition‐metal hydride complexes should be between Group 5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen‐rich materials that are of both technological and fundamental interest.  相似文献   

8.
9.
Hydrogen can be selectively removed from organotin trihydrides to generate the corresponding organohydrostannylene intermediates. Depending on the size of the substituent and the mode of generation, the intermediates undergo further reactions. Herein, we report on the formation of a variety of organotin hydrides with tin in the oxidation states SnII, SnI–SnIII and SnIII–SnIII, all accessed by the controlled removal of hydrogen from the tetravalent Ar′SnIV trihydride (Ar′=2,6‐dimesitylphenyl, mesityl=2,4,6‐trimethylphenyl).  相似文献   

10.
The first soluble barium boryloxides [Ba]– OB{CH(SiMe3)2} are presented. These mono‐ or dinuclear complexes feature low coordination numbers, as low as two for [Ba(OB{CH(SiMe3)2}2)2], which is further stabilized by intra‐ and intermolecular Ba???H3C agostic interactions. Barium boryloxides and the parent [Ba{N(SiMe3)2}2?(thf)2] catalyze the dehydrocoupling of borinic acids with hydrosilanes, providing borasiloxanes under mild conditions.  相似文献   

11.
12.
Reaction of [Pt(PEt(3))(3)] with the primary and secondary phosphine-borane adducts PhRPH x BH(3) (R=H, Ph) resulted in oxidative addition of a P-H bond at the Pt(0) center to afford the complexes trans-[PtH(PPhR x BH(3))(PEt(3))(2)] (1: R=H; 2: R=Ph). The products 1 and 2 were characterized by (1)H, (11)B, (13)C, (31)P, and (195)Pt NMR spectroscopy, and the molecular structures were verified by X-ray crystallography. In both cases, a trans arrangement of the hydride ligand with respect to the phosphidoborane ligand was observed. When 2 was treated with PhPH(2) x BH(3), a novel phosphidoborane ligand-exchange reaction occurred which yielded 1 and Ph(2)PH x BH(3). Treatment of 2 with one equivalent of depe (depe=1,2-bis(diethylphosphino)ethane) resulted in the formation of the complex cis-[PtH(PPh(2) x BH(3))(depe)] (3), in which the hydride ligand and the phosphidoborane ligand are in a cis arrangement. Treatment of 3 with PhPH(2) x BH(3) was found to result in an exchange of the phosphidoborane ligands to give the complex cis-[PtH(PPhH x BH(3))(depe)] (4) and Ph(2)PH x BH(3). Complex 4 was found to undergo further reaction in the presence of PhPH(2) x BH(3) to give meso-cis-[Pt(PPhH x BH(3))(2)(depe)] (5) and rac-cis-[Pt(PPhH x BH(3))(2)(depe)] (6).  相似文献   

13.
Two ammonia–(dinitramido)boranes were synthesized by the reaction of dinitroamine with ammonia–borane. These compounds are the first reported examples of (dinitramido)boranes. Ammonia–mono(dinitramido)borane is a perfectly oxygen‐balanced high‐energy‐density material (HEDM) composed of an ammonia–BH2 fuel group and a strongly oxidizing dinitramido ligand. Although it is thermally not stable enough for practical applications, its predicted specific impulse as a solid rocket propellant would be 333 s. Its predicted performance as an explosive matches that of pentaerythtritol tetranitrate (PETN) and significantly exceeds that of trinitrotoluene (TNT). Its structure was established by X‐ray crystallography and vibrational and multinuclear NMR spectroscopy. Additionally, the over‐oxidized ammoniabis(dinitramido)borane was detected by NMR spectroscopy.  相似文献   

14.
Transition‐metal‐catalyzed C‐alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by‐product, thus making the BH process atom‐economical and environmentally benign. Diverse homogeneous and heterogeneous transition‐metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition‐metal‐catalyzed BH α‐alkylation of ketones, and β‐alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C?C bond formation is included.  相似文献   

15.
A comprehensive study of the reactivity of Lewis bases with dihalodiboranes(4) is presented. Diaryldihalodiboranes provide rearranged monoadducts when treated with cyclic (alkyl)(amino)carbenes, but halide‐bridged adducts when treated with a range of pyridyl bases. Alternatively, the combination of diaminodihalodiboranes with strong carbene donors leads to boraborenium salts. The reduction and halide‐abstraction reactivity of these adducts was also explored, leading to intramolecular C?H activation and the first 1,2‐bis(borenium) dication.  相似文献   

16.
Donor–acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition‐metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition‐metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor–acceptor cyclopropanes.  相似文献   

17.
The graphite‐like yttrium hydride halides, YIHn (0.8 ? n ? 1.0), have been prepared in quantitative yields by heating either YI3, YH2 (1:2) or stoichiometric YI3, YH2, Y mixtures in sealed Ta ampoules at 900°C. A lower limit of the homogeneity range, n ≈ 2/3, has been determined from dehydrogenation experiments. All YIHn phases adopt the ZrBr‐type heavy‐atom structure. The hydrogen variation is accompanied by a change in the c lattice constant from 31.162(3) to 31.033(1) Å for n = 0.61(3) to 1.02(3). The YIHn phases reversibly react with hydrogen at 400‐600°C to form the light green transparent compound YIH2. However, increasing the reaction temperature above 700°C causes decomposition to an unidentified phase being in equilibrium with YH2 and YI3. The arrangement of the heavy atoms in YIH2 (P m1; a = 3.8579(3) Å, c = 10.997(1) Å) corresponds to a four‐layer I‐Y‐Y‐I slab with the stacking sequence (AbaB) as was found by x‐ray powder diffraction data refinement with the Rietveld method. A miscibility gap exists between YIH and YIH2. Samples YIHn (n ? 1.0) show metallic conductivity at room temperature, which changes into semiconducting behavior with decreasing temperature as n approaches its lower value ≈ 2/3.  相似文献   

18.
19.
The hydropyrimidine salan (salan=N,N′‐dimethyl‐N,N′‐bis[(2‐hydroxyphenyl)methylene]‐1,2‐diaminoethane) proteo‐ligands with a rigid backbone {ON^(CH2)^NO}H2 react with M(CH2SiMe3)3 (M=Ga, In) to yield the zwitterions {ON^(CH+)^NO}M?(CH2SiMe3)2 (M=Ga, 2 ; In, 3 ) by abstraction of a hydride from the ligand backbone followed by elimination of dihydrogen. By contrast, with Al2Me6, the neutral‐at‐metal bimetallic complex [{ON^(CH2)^NO}AlMe]2 ( [1]2 ) is obtained quantitatively. The formation of indium zwitterions is also observed with sterically more encumbered ligands containing o‐Me substituents on the phenolic rings, or an N (CHPh) N moiety in the heterocyclic core. Overall, the ease of C?H bond activation follows the order Al?Ga<In. Experimental data based on model complexes, XRD studies, and 2H NMR spectroscopy show that the formation of the Ga/In zwitterion involves rapid release of SiMe4 followed by evolution of H2, and suggest the formation of a transient metal‐hydride species. DFT calculations indicate that the systems {ON^(CH2)^NO}H2+M(CH2SiMe3)3 (M=Al, Ga, In) all initially lead to the formation of the neutral monophenolate dihydrocarbyl species through a single protonolysis. From here, the thermodynamic product, the model neutral‐at‐metal complex 1 , is formed in the case of aluminum after a second protonolysis. On the other hand, lower activation energy pathways lead to the generation of zwitterionic complexes 2 and 3 in the cases of gallium and indium, and the formation of these zwitterions obeys a strict kinetic control; the computations suggest that, as inferred from the experimental data, the reaction proceeds through an instable metal‐hydride species, which could not be isolated synthetically.  相似文献   

20.
Transition‐metal‐catalyzed carbon–carbon and carbon–heteroatom bond formations are among the most heavily used types of reactions in both academic and industrial settings. As important as these are to the synthetic community, such cross‐couplings come with a heavy price to our environment, and sustainability. E Factors are one measure of waste created, and organic solvents, by far, are the main contributors to the high values associated, in particular, with the pharmaceutical and fine‐chemical companies which utilize these reactions. An alternative to organic solvents in which cross‐couplings are run can be found in the form of micellar catalysis, wherein nanoparticles composed of newly introduced designer surfactants enable the same cross‐couplings, albeit in water, with most taking place at room temperature. In the absence of an organic solvent as the reaction medium, organic waste and hence, E Factors, drop dramatically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号