首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one‐pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N‐masking group of the N‐terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o‐aminoanilide. The ready availability of Fmoc‐Cys(Trt)‐OH, which is routinely used in Fmoc solid‐phase peptide synthesis, where the Fmoc group is pre‐installed on cysteine residue, minimizes additional steps required for the temporary protection of the N‐terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

2.
Histidine‐containing peptides are valuable therapeutic agents for a treatment of neurodegenerative diseases. However, the synthesis of histidine‐containing peptides is not trivial due to the potential of imidazole sidechain of histidine to act as a nucleophile if unprotected. A peptide ligation method utilizing the imidazole sidechain of histidine has been developed. The key imidazolate intermediate that acts as an internal acyl transfer catalyst during ligation is generated by deprotonation. Transesterification with amino acids or peptides tethered with C‐terminal thioester followed by N→N acyl shifts led to the final ligated products. A range of histidine‐containing dipeptides could be synthesized in moderate to good yields via this method without protecting the imidazole sidechain. The protocol was further extended to tripeptide synthesis via a long‐range N→N acyl transfer, and tetrapeptide synthesis.  相似文献   

3.
The primary products of the chemical ligation of α‐ketoacids and 5‐oxaproline peptides are esters, rather than the previously reported amides. The depsipeptide product rapidly rearranges to the amide in basic buffers. The formation of esters sheds light on possible mechanisms for the type II KAHA ligations and opens an avenue for the chemical synthesis of depsiproteins.  相似文献   

4.
Efforts to chemically ligate oligonucleotides, without resorting to biochemical enzymes, have led to a multitude of synthetic analogues, and have extended oligomer ligation to reactions of novel oligonucleotides, peptides, and hybrids such as PNA. 1 Key requirements for potential diagnostic tools not based on PCR include a fast templated chemical DNA ligation method that exhibits high pairing selectivity, and a sensitive detection method. Here we report on a solid‐phase synthesis of oligonucleotides containing 5′‐ or 3′‐mercapto‐dideoxynucleotides and their chemical ligations, yielding 3′‐5′‐disulfide bonds as a replacement for 3′‐5′‐phosphodiester units. Employing a system designed for fluorescence monitoring, we demonstrate one of the fastest ligation reactions with half‐lives on the order of seconds. The nontemplated ligation reaction is efficiently suppressed by the choice of DNA modification and the 3′‐5′ orientation of the activation site. The influence of temperature on the templated reaction is shown.  相似文献   

5.
While chemical protein synthesis has granted access to challenging proteins, the synthesis of longer proteins is often limited by low abundance or non‐strategic placement of cysteine residues, which are essential for native chemical ligations, as well as multiple purification and isolation steps. We describe the one‐pot total synthesis of human thiosulfate:glutathione sulfurtransferase (TSTD1). WT‐TSTD1 was synthesized in a C‐to‐N synthetic approach involving multiple NCL reactions, CuII‐mediated deprotection of selenazolidine (Sez), and chemoselective deselenization. The seleno‐analog Se‐TSTD1, in which the active site Cys is replaced with selenocysteine, was also synthesized with a kinetically controlled ligation with an N‐to‐C synthetic approach. The catalytic activity of the two proteins indicated that Se‐TSTD1 possessed only four‐fold lower activity than WT‐TSTD1, thus suggesting that selenoproteins can have physiologically comparable sulfutransferase activity to their cysteine counterparts.  相似文献   

6.
The convergent synthesis of proteins by multiple ligations requires segments protected at the N‐ and/or C‐terminus with masking groups that are orthogonal to the acid‐ and base‐labile protecting groups used in Fmoc‐SPPS. They must be stable to solid‐phase peptide synthesis, HPLC purification, and ligation conditions and easily removed in the presence of unprotected side chains. In this report, we document photolabile protecting groups for both α‐ketoacids and hydroxylamines, the key functional groups employed in the α‐ketoacid–hydroxylamine (KAHA) ligation. The novel photoprotected α‐ketoacid is easily installed onto numerous different C‐terminal peptide α‐ketoacids and removed by UV light under aqueous conditions. These advances were applied to the one‐pot synthesis of NEDD8, an important modifier protein, by three different convergent routes. These new protecting groups provide greater flexibility on the order of fragment assembly and reduce the number of reaction and purification steps needed for protein synthesis with the KAHA ligation.  相似文献   

7.
N‐Sulfanylethylanilide (SEAlide) peptides were developed with the aim of achieving facile synthesis of peptide thioesters by 9‐fluorenylmethyloxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (Fmoc SPPS). Initially, SEAlide peptides were found to be converted to the corresponding peptide thioesters under acidic conditions. However, the SEAlide moiety was proved to function as a thioester in the presence of phosphate salts and to participate in native chemical ligation (NCL) with N‐terminal cysteinyl peptides, and this has served as a powerful protein synthesis methodology. The reactivity of a SEAlide peptide (anilide vs. thioester) can be easily tuned with or without the use of phosphate salts. This interesting property of SEAlide peptides allows sequential three‐fragment or unprecedented four‐fragment ligation for efficient one‐pot peptide/protein synthesis. Furthermore, dual‐kinetically controlled ligation, which enables three peptide fragments simultaneously present in the reaction to be ligated in the correct order, was first achieved using a SEAlide peptide. Beyond our initial expectations, SEAlide peptides have served in protein chemistry fields as very useful crypto‐peptide thioesters. DOI 10.1002/tcr.201200007  相似文献   

8.
C‐Terminal peptide thioesters are shown to react efficiently with peptide fragments containing an N‐terminal selenocysteine to give selenoproteins. In analogy to the native chemical ligation of thioesters and peptides containing N‐terminal cysteines, the selenol presumably attacks the thioester nucleophilically to give a selenoester intermediate that subsequently rearranges to give a native chemical bond. The utility of this procedure was demonstrated by the synthesis of a selenium‐containing derivative of bovine pancreatic trypsin inhibitor (BPTI) in which Cys38 is replaced by selenocysteine. The artificial selenoprotein folds into a conformation similar to that of wild‐type BPTI and inhibits trypsin and chymotrypsin with unaltered affinity.  相似文献   

9.
The method of native chemical ligation between an unprotected peptide α‐thioester and an N‐terminal cysteine–peptide to give a native peptide in aqueous solution is one of the most effective peptide ligation methods. In this work, a systematic theoretical study was carried out to fully understand the detailed mechanism of ligation. It was found that for the conventional native chemical ligation reaction between a peptide thioalkyl ester and a cysteine in combination with an added aryl thiol as catalyst, both the thiol‐thioester exchange step and the transthioesterification step proceed by an anionic concerted SN2 displacement mechanism, whereas the intramolecular rearrangement proceeds by an addition–elimination mechanism, and the rate‐limiting step is the thiol‐thioester exchange step. The theoretical method was then extended to study the detailed mechanism of the auxiliary‐mediated peptide ligation between a peptide thiophenyl ester and an N‐2‐mercaptobenzyl peptide in which both the thiol‐thioester exchange step and intramolecular acyl‐transfer step proceed by a concerted SN2‐type displacement mechanism. The energy barrier of the thiol‐thioester exchange step depends on the side‐chain steric hindrance of the C‐terminal amino acid, whereas that of the acyl‐transfer step depends on the side‐chain steric hindrance of the N‐terminal amino acid.  相似文献   

10.
Weak transient protein–protein interactions (PPIs) play an essential role in cellular dynamics. However, it is challenging to obtain weak protein complexes owing to their short lifetime. Herein we present a general and facile method for trapping weak PPIs in an unbiased manner using proximity‐induced ligations. To expand the chemical ligation spectrum, we developed novel N2N (N‐terminus to N‐terminus) and C2C (C‐terminus to C‐terminus) ligation approaches. By using N2C (N‐terminus to C‐terminus), N2N, and C2C ligations in one pot, the interacting proteins were linked. The weak Ypt1:GDI interaction drove C2C ligation with t1/2 of 4.8 min and near quantitative conversion. The Ypt1‐GDI conjugate revealed that binding of Ypt1 G‐domain causes opening of the lipid‐binding site of GDI, which can accommodate one prenyl group, giving insights into Rab membrane recycling. Moreover, we used this strategy to trap the KRas homodimer, which plays an important role in Ras signaling.  相似文献   

11.
O‐Acyl isopeptides, in which the N‐acyl linkage on the hydroxyamino acid residue (e.g., Ser and Thr) is replaced with an O‐acyl linkage, generally possess superior water‐solubility to their corresponding native peptides, as well as other distinct physicochemical properties. In addition, O‐acyl isopeptides can be rapidly converted into their corresponding native peptide under neutral aqueous conditions through an O‐to‐N acyl migration. By exploiting these characteristics, researchers have applied the O‐acyl isopeptide method to various peptide‐synthesis fields, such as the synthesis of aggregative peptides and convergent peptide synthesis. This O‐acyl‐isopeptide approach also serves as a means to control the biological function of the peptide in question. Herein, we report the synthesis of O‐acyl isopeptides and some of their applications.  相似文献   

12.
We have discovered that N‐alkyl aminomalonates undergo a fast and selective intramolecular C→N acyl rearrangement reaction in the presence of a strong base, leading to N‐protected glycinates in excellent yield. Moreover, the fact that the reaction proceeds through a nucleophilic enolate intermediate has been used for implementing a tandem rearrangement/alkylation sequence that has been applied to the preparation of synthetically relevant nonproteinogenic tertiary and quaternary N‐alkyl α‐amino acids in a very simple and reliable way.  相似文献   

13.
The chemical synthesis of the 184‐residue ferric heme‐binding protein nitrophorin 4 was accomplished by sequential couplings of five unprotected peptide segments using α‐ketoacid‐hydroxylamine (KAHA) ligation reactions. The fully assembled protein was folded to its native structure and coordinated to the ferric heme b cofactor. The synthetic holoprotein, despite four homoserine residues at the ligation sites, showed identical properties to the wild‐type protein in nitric oxide binding and nitrite dismutase reactivity. This work establishes the KAHA ligation as a valuable and viable approach for the chemical synthesis of proteins up to 20 kDa and demonstrates that it is well‐suited for the preparation of hydrophobic protein targets.  相似文献   

14.
Cysteine-containing dipeptides 3a-l, (3b+3b') (compound numbers in parentheses are used to indicate racemic mixtures; thus (3b+3b') is the racemate of 3b and 3b'), and tripeptide 13 were synthesized in 68-96% yields by acylation of cysteine with N-(Pg-α-aminoacyl)- and N-(Pg-α-dipeptidoyl)benzotriazoles (where Pg stands for protecting group in the nomenclature for peptides throughout the paper) in the presence of Et(3)N. Cysteine-containing peptides 3a-l and 13 were S-acylated to give S-(Pg-α-aminoacyl)dipeptides 5a-l and S-(Pg-α-aminoacyl)tripeptide 14 without racemization in 47-90% yields using N-(Pg-α-aminoacyl)benzotriazoles 2 in CH(3)CN-H(2)O (7:3) in the presence of KHCO(3). (In our peptide nomenclature, the prefixes di-, tri-, etc. refer to the number of amino acid residues in the main peptide chain; amino acid residues attached to sulfur are designated as S-acyl peptides. Thus we avoid use of the prefix "iso".) Selective S-acylations of serine peptide 3k and threonine peptide 3l containing free OH groups were thus achieved in 58% and 72% yield, respectively. S-(Pg-α-aminoacyl)cysteines 4a,b underwent native chemical ligations to form native dipeptides 3f,i via 5-membered cyclic transition states. Microwave irradiation of S-(Pg-α-aminoacyl)tripeptide 15 and S-(Pg-α-aminoacyl)tetrapeptide 17 in the presence of NaH(2)PO(4)/Na(2)HPO(4) buffer solution at pH 7.8 achieved chemical ligations, involving intramolecular migrations of acyl groups, via 11- and 14-membered cyclic transition states from the S-atom of a cysteine residue to a peptide terminal amino group to form native peptides 19 and 20 in isolated yields of 26% and 23%, respectively.  相似文献   

15.
A solubilizing Trt‐K10 tag was developed for the effective chemical preparation of peptides/proteins with low solubility. The Trt‐K10 tag comprises a hydrophilic oligo‐Lys sequence and a trityl anchor, and can be selectively introduced to a side chain thiol of Cys of deprotected peptides/proteins with a trityl alcohol‐type introducing reagent Trt(OH)‐K10 under acidic conditions. Significantly, the ligation product in the reaction mixture of a thiol‐additive‐free native chemical ligation can be modified directly in a one‐pot manner to facilitate the isolation of the product by high‐performance liquid chromatography. Finally, the Trt‐K10 tag can be readily removed with a standard trifluoroacetic acid cocktail. Using this easy‐to‐attach/detach tag‐aided method, a hepatitis B virus capsid protein that is usually difficult to handle was synthesized successfully.  相似文献   

16.
Although native chemical ligation has enabled the synthesis of hundreds of proteins, not all proteins are accessible through typical ligation conditions. The challenging protein, 125‐residue human phosphohistidine phosphatase 1 (PHPT1), has three cysteines near the C‐terminus, which are not strategically placed for ligation. Herein, we report the first sequential native chemical ligation/deselenization reaction. PHPT1 was prepared from three unprotected peptide segments using two ligation reactions at cysteine and alanine junctions. Selenazolidine was utilized as a masked precursor for N‐terminal selenocysteine in the middle segment, and, following ligation, deselenization provided the native alanine residue. This approach was used to synthesize both the wild‐type PHPT1 and an analogue in which the active‐site histidine was substituted with the unnatural and isosteric amino acid β‐thienyl‐l ‐alanine. The activity of both proteins was studied and compared, providing insights into the enzyme active site.  相似文献   

17.
Human interleukin 6 (IL‐6) is a potent cytokine with immunomodulatory properties. As the influence of N‐glycosylation on the in vivo activities of IL‐6 could not be elucidated so far, a semisynthesis of homogeneous glycoforms of IL‐6 was established by sequential native chemical ligation. The four cysteines of IL‐6 are convenient for ligations and require only the short synthetic glycopeptide 43–48. The Cys‐peptide 49–183 could be obtained recombinantly by cleavage of a SUMO tag. The fragment 1–42 was accessible by the simultaneous cleavage of two inteins, leading to the 1–42 thioester with the native N‐terminus. Ligation and refolding studies showed that the inherently labile Asp? Pro bond 139–140 was detrimental for the sequential C‐ to N‐terminal ligation. A reversed ligation sequence using glycopeptide hydrazides gave full‐length IL‐6 glycoproteins, which showed full bioactivity after efficient refolding and purification.  相似文献   

18.
Δ2‐Thiazolines are interesting heterocycles that display a wide variety of biological characteristics. They are also common in chiral ligands used for asymmetric syntheses and as synthetic intermediates. Herein, we present asymmetric routes to 2,4,5‐trisubstituted Δ2‐thiazolines. These Δ2‐thiazolines were synthesized from readily accessible/commercially available α,β‐unsaturated methyl esters through a Sharpless asymmetric dihydroxylation and an O→N acyl migration reaction as key steps. The final products were obtained in good yields with up to 97 % enantiomeric excess.  相似文献   

19.
The preparation of native S‐palmitoylated (S‐palm) membrane proteins is one of the unsolved challenges in chemical protein synthesis. Herein, we report the first chemical synthesis of S‐palm membrane proteins by removable‐backbone‐modification‐assisted Ser/Thr ligation (RBMGABA‐assisted STL). This method involves two critical steps: 1) synthesis of S‐palm peptides by a new γ‐aminobutyric acid based RBM (RBMGABA) strategy, and 2) ligation of the S‐palm RBM‐modified peptides to give the desired S‐palm product by the STL method. The utility of the RBMGABA‐assisted STL method was demonstrated by the synthesis of rabbit S‐palm sarcolipin (SLN) and S‐palm matrix‐2 (M2) ion channel. The synthesis of S‐palm membrane proteins highlights the importance of developing non‐NCL methods for chemical protein synthesis.  相似文献   

20.
A practical approach towards N‐glycopeptide synthesis using an auxiliary‐mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N‐linked glycosyl auxiliary to the thioester side chain of an N‐terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C‐terminal thioester oligopeptide. Mild cleavage provides the desired N‐glycopeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号