首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Propagating reaction fronts allow the formation of materials in self‐sustained, steep concentration gradients, which would otherwise rapidly decay. These conditions can result in macroscopic, noncrystallographic structures, such as tubes with large aspect ratios. For hollow silica/Zn(OH)2 tubes, we report the inclusion of diverse mesoscopic building blocks ranging from polymer beads to biological cells. For agarose beads, we observe spontaneous alignment along vertical tracks; the nearly periodic spacing of the beads along these tracks follows a log‐normal distribution. We interpret this patterning in terms of hydrodynamic recruitment and discuss similarities to the adhesion dynamics of leukocytes in blood vessels. For diatoms and other cells, we observe novel surface textures, and yeast tagged with a green fluorescent protein shows strong fluorescence activity after trapping. The inclusion of these guest units should improve the possibilities for the application of these tubes in microfluidics and biotechnology.  相似文献   

3.
Hierarchical mesoporous silicas containing two kinds of mesoporous size are successfully synthesized using the simple evaporation‐induced self‐assembly (EISA) strategy. Two blocks of hydrophobic segments (PE and PCL) in the poly(ethylene‐block‐ethylene oxide‐block‐ϵ‐caprolactone) (PE‐PEO‐PCL) triblock copolymer are involved in the two types of mesopore after calcination, the PE segment being attributed to the face‐centered cubic (fcc) morphology (spherical pores) and the PCL segment attributed to the tetragonal cylinder structure (cylindrical pores).  相似文献   

4.
5.
Herein we report on the mechanism of formation of a hybrid phenylene-bridged hexagonally ordered mesoporous organosilica with crystal-like walls (CW-Ph-HMM). Electron microscopy and X-Ray diffraction studies indicate that the formation of CW-Ph-HMM involves the surfactant-mediated hydrothermal transformation of an amorphous organosilica precursor and that the final product is hierarchically ordered. Significantly, the material is in the form of submicrometre-thick sheets that consist of co-aligned aggregates of needle-like particles (up to 500 nm in length and 50 nm in width). The results suggest that preferential growth along the channel direction of the hexagonally ordered mesostructure is coupled with the propagation of molecular periodicity in the pore walls. Together, these factors give rise to the growth of highly anisotropic primary nanofilaments that become co-aligned to produce micrometer-thick sheets consisting of a periodic array of mesoscopic channels oriented perpendicular to the surface of the flake-like particles.  相似文献   

6.
7.
8.
Spontaneous phase-separated, controlled aggregate structures of photo- and electroactive molecules in polymer matrices are of interest for device fabrication. We show that the self-assembly of octabutoxyphthalocyanine (Pc) in polymer matrices leads to tubular morphology of Pc when the film is prepared with tetrachloroethane (TCE) and subsurface droplet morphology with chloroform. The same morphology is seen with both bisphenol A polycarbonate (BPAPC) and poly(methyl methacrylate) (PMMA) as the matrix. The subsurface morphology results from the rapid association of Pc in the polymer matrix, as the film forms. With the tubular morphology in the films prepared with TCE, percolation threshold is reached with a concentration of Pc as low as 3% (wt) in the polymer. Such phase-separated self-assembly occurs, without any annealing of the films. Even in the absence of the polymer, Pc crystallized from TCE also shows tubular morphology, whereas it exhibits a columnar morphology with chloroform. X-ray diffraction of Pc crystallized from either solvent shows the columnar stacking of the Pc molecules. However, the morphology is tubular when TCE is used. We attribute the difference in the morphology to the higher viscosity of TCE and the diffusion-limited growth, which causes the tubular morphology, whereas the instantaneous self-assembly in less-viscous chloroform leads to droplets. The solvent effect observed here could be used to tailor the morphology of such photoconductive molecules in polymer matrices.  相似文献   

9.
Hierarchical nanoporous structures are fabricated by adsorption of micelles of diblock copolymer‐templated Au‐nanoparticles onto a hydrophilic solid substrate. Gold nanoparticles are prepared using micelles (19 nm) of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) as nanoreactors. Deposition of thin films of the micellar solution, modified with a non‐selective solvent (THF), on hydrophilic surfaces leads to the formation of hierarchical nanoporous morphologies. The thin films exhibit two different pore diameters and a total pore density of 15 × 108 holes per cm2. The structure was analyzed in terms of topography and chemical composition using AFM, TEM and XPS measurements. The PS‐b‐P4VP template was subsequently removed by oxygen plasma etching, to leave behind metallic nanopores that mimic the original thin film morphology.

  相似文献   


10.
Biologically inspired optimal structures combining the bioresorbable and bioactive properties are expected for the next generation of biomaterials. A compositional gradient structure was found to be spontaneously formed in the film of biodegradable chitosan/poly(vinyl alcohol) blend by casting aqueous solution on an aluminum dish. The formation of compositional gradient structure was confirmed by FTIR mapping measurement, DMTA measurement, and SEM observation on the freeze‐fractured cross section. In DMTA measurement, a broadening of the α‐relaxation curve corresponding to the glass transition was observed for the compositional gradient film, while a composition‐dependent single glass transition was observed for the homogeneous blend films. The resulted film with stable self‐organized compositional gradient exhibits novel physical properties inaccessible for the film of homogeneous blends obtained by casting from the same solution on a Teflon dish. The compositional gradient films present a unique combination of stronger stress and higher yield strain when compared with those of the homogeneous films at both dry and wet states. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3069–3076, 2005  相似文献   

11.
12.
Designing nanoscaled hierarchical structures with increasing levels of complexity is challenging. Here we show that electrostatic interactions between two complementarily supercharged protein nanocages can be effectively utilized to create nested Matryoshka‐type structures. Cage‐within‐cage complexes containing spatially ordered iron oxide nanoparticles spontaneously self‐assemble upon mixing positively supercharged ferritin compartments with AaLS‐13, a larger shell‐forming protein with a negatively supercharged lumen. Exploiting engineered Coulombic interactions and protein dynamics in this way opens up new avenues for creating hierarchically organized supramolecular assemblies for application as delivery vehicles, reaction chambers, and artificial organelles.  相似文献   

13.
The breath figure method was used to prepare dodecanethiol‐capped gold nanoparticle macroporous structures with pore diameters from 1.7 to 3.5 μm on an air/water interface. A two‐step procedure is proposed for the fabrication of these macroporous structures, by forming a surfactant monolayer on water, and drop‐casting a gold nanoparticle dispersion in chloroform onto the surfactant monolayer. The self‐assembled films are easily transferred from the water surface onto different substrates and were characterized by TEM, SEM, and AFM. Ordered honeycomb structures with different pore arrays (perforated monolayer films, hexagonal networks and alveoli‐like porous films) were obtained. The change in morphology is concentration dependent, and deformed structures with elliptic honeycomb networks are also observed. In addition, honeycomb films using gold nanoparticles stabilized by a weakly bound ligand (dioctadecyldimethylammonium chloride) were formed by the same technique. These films have potential as substrates for surface‐enhanced Raman spectroscopy.  相似文献   

14.
The large tendency of catechol rings to adsorb on surfaces has been studied by STM experiments with molecular resolution combined with molecular‐dynamics simulations. The strong adhesion is due to interactions with the surface and solvent effects. Moreover, the thermodynamic control over the differential adsorption of 1 and the nonanoic solvent molecules has been used to induce a new temperature‐induced switchable interconversion. Two different phases that differ in their crystal packing and the presence of solvent molecules coexist upon an increase or decrease in the temperature. These results open new insight into the behavior of catechol molecules on surfaces and 2D molecular suprastructures.  相似文献   

15.
Superhydrophobic surfaces inspired by biological microstructures attract considerable attention from researchers because of their potential applications. In this contribution, two kinds of microscale flower‐shaped morphologies with nanometer petals formed from the hierarchical self‐assembly of benzothiophene derivatives bearing long alkyl chains have been developed as superhydrophobic surfaces. The intermediate stages of the assemblies demonstrated a new formation mechanism for such flower‐shaped morphologies. The hierarchical morphologies of the film exhibited excellent water‐repelling characteristics as superhydrophobic surfaces, which were prepared by means of a simple solution process. The transition process from the Cassie state to Wenzel state was easily realized owing to the slight microstructural differences in the two kinds of flowers caused by their different chemical structures. The superhydrophobicity of such functional materials might be beneficial for applications in electrical devices in which the presence of water would influence their performance.  相似文献   

16.
The construction of a spatially defined assembly of molecular building blocks, especially in the vertical direction, presents a great challenge for surface molecular engineering. Herein, we demonstrate that an electric field applied between an STM tip and a substrate triggered the formation of a bilayer structure at the solid–liquid interface. In contrast to the typical high electric‐field strength (109 V m?1) used to induce structural transitions in supramolecular assemblies, a mild electric field (105 V m?1) triggered the formation of a bilayer structure of a polar molecule on top of a nanoporous network of trimesic acid on graphite. The bilayer structure was transformed into a monolayer kagome structure by changing the polarity of the electric field. This tailored formation and large‐scale phase transformation of a molecular assembly in the perpendicular dimension by a mild electric field opens perspectives for the manipulation of surface molecular nanoarchitectures.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号