共查询到20条相似文献,搜索用时 0 毫秒
1.
Photocatalytic Activity of Au/TiO2 Photocatalysts for H2 Evolution: Role of the Au Nanoparticles as a Function of the Irradiation Wavelength 下载免费PDF全文
An investigation of hydrogen production with a series of Au/TiO2 photocatalysts reveals that the Au nanoparticles play different roles depending on the wavelength of the light irradiation. Under visible‐light irradiation, the photoactivity is primarily controlled by the intensity of the Au surface plasmon band, whereas under UV irradiation the Au nanoparticles act as co‐catalysts with TiO2. 相似文献
2.
Dr. Mahnaz Najafi Dr. Sara Abednatanzi Abbas Yousefi Prof. Mehrorang Ghaedi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(72):17999-18014
Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3N4) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation. 相似文献
3.
4.
Three‐dimensional nanostructured metallic substrates for enhanced vibrational spectroscopy are fabricated by self‐assembly. Nanostructures consisting of one to 20 depositions of 13 nm‐diameter Au nanoparticles (NPs) on Au films are prepared and characterized by means of AFM and UV/Vis reflection–absorption spectroscopy. Surface‐enhanced polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) is observed from Au NPs modified by the probe molecule 4‐hydroxythiophenol. The limitation of this kind of substrate for surface‐enhanced PM‐IRRAS is discussed. The surface‐enhanced Raman scattering (SERS) from the same probe molecule is also observed and the effect of the number of Au‐NP depositions on the SERS efficiency is studied. The SERS signal from the probe molecule maximizes after 11 Au‐NP depositions, and the absolute SERS intensities from different batches are reproducible within 20 %. In situ electrochemical SERS measurements show that these substrates are stable within the potential window between ?800 and +200 mV (vs. Ag/AgCl/sat. Cl?). 相似文献
5.
Reaction pathway change on plasmonic Au nanoparticles studied by surface-enhanced Raman spectroscopy
《中国化学快报》2021,32(9):2846-2850
Gold nanoparticles (Au NPs) are nanoscale sources of light and electrons, which are highly relevant for their extensive applications in the field of photocatalysis. Although a number of research works have been carried out on chemical reactions accelerated by the energetic hot electrons/holes, the possibility of reaction pathway change on the plasmonic Au surfaces has not been reported so far. In this proof-of-concept study, we find that Au NPs change the reaction pathway in photooxidation of alkyne under visible light irradiation. This reaction produces benzil (COCO) without the presence of Au NPs. In contrast, as indicated by surface-enhanced Raman spectroscopic (SERS) results, the CC triple bonds (CC) adsorbed on Au NPs are converted into carboxyl (COOH) and acyl chloride (COCl) groups. The plasmonic Au NPs not only provide energetic charge carriers but also activate the reactant molecules as conventional heterogeneous catalysts. This study discloses the second role of plasmonic NPs in photocatalysis and bridges the gap between plasmon-driven and conventional heterogeneous catalysis. 相似文献
6.
Probing the Catalytic Activity of Reduced Graphene Oxide Decorated with Au Nanoparticles Triggered by Visible Light 下载免费PDF全文
Dr. Jiale Wang Dr. Fabiane J. Trindade Caroline B. de Aquino Joana C. Pieretti Prof. Dr. Sergio H. Domingues Prof. Dr. Romulo A. Ando Prof. Dr. Pedro H. C. Camargo 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(27):9889-9894
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process. 相似文献
7.
Marcus Sackrow Catrinel Stanciu M. Andreas Lieb Alfred J. Meixner Prof. 《Chemphyschem》2008,9(2):316-320
A novel near‐field optical microscope based on a parabolic mirror is used for recording high‐resolution tip‐enhanced photoluminescence (PL) and Raman images with unprecedented sensitivity and contrast. The measurements reveal small islands on the Au surface with dimensions of only a few nanometres with locally enhanced Au PL. These islands appear as nanometre‐sized hot spots in tip‐enhanced Raman microscopy when benzotriazole molecules adsorbed on the Au surface serve as local sensors for the optical field. The spectra show that localized plasmons are the cause of both the locally enhanced Au PL and enhanced Raman scattering. This finding suggests that the dispersive background in the surface‐enhanced Raman spectra can be explained simply by the enhanced Au PL in the gap. Furthermore, our results show that the surface flatness must be better than 1 nm, to provide an optically homogeneous substrate for near‐field enhanced PL and Raman spectroscopy. 相似文献
8.
Visible‐Light Photoresponse of Gold Nanoparticles Supported on TiO2: A Combined Photocatalytic,Photoelectrochemical, and Transient Spectroscopy Study 下载免费PDF全文
Herme G. Baldovi Ferran Albarracin Dr. Pedro Atienzar Dr. Belen Ferrer Prof. Mercedes Alvaro Prof. Hermenegildo Garcia 《Chemphyschem》2015,16(2):335-341
In the context of gaining understanding on the origin of the visible‐light photoresponse of TiO2 containing gold nanoparticles, the photocurrent spectra and photocatalytic H2 evolution of titania (P25) and Au–P25 were compared. Whereas no photocurrent was detected upon visible‐light irradiation for either of the two photocatalysts, Au–P25 exhibited photocatalytic H2 evolution for wavelengths between 400 and 575 nm. This contradictory behavior under visible‐light irradiation of Au–P25 was rationalized by transient absorption spectroscopy. It was suggested that photocatalytic H2 generation results from methanol quenching of the charge‐separation state in each semiconductor nanoparticle, but the lack of photocurrent is due to the short lifetime of the charge separation, which makes interparticle charge migration for micrometric distances unlikely. 相似文献
9.
10.
Synthesis of Hollow Mesoporous TiO2 Microspheres with Single and Double Au Nanoparticle Layers for Enhanced Visible‐Light Photocatalysis 下载免费PDF全文
Dr. Zia Ur Rahman Dr. Ning Wei Dr. Yange Feng Dr. Xiaolong Zhang Prof. Daoai Wang 《化学:亚洲杂志》2018,13(4):432-439
A facile method was used to prepare hollow mesoporous TiO2 and Au@TiO2 spheres using polystyrene (PS) templates. Au nanoparticles (NPs) were simultaneously synthesized and attached on the surface of PS spheres by reducing AuCl4? ions using sodium citrate which resulted in the uniform deposition of Au NPs. The outer coating of titania via sol‐gel produced PS@Au@TiO2 core–shell spheres. Removing the templates from these core–shell spheres through calcination produced hollow mesoporous and crystalline Au@TiO2 spheres with Au NPs inside the TiO2 shell in a single step. Anatase spheres with double Au NPs layers, one inside and another outside of TiO2 shell, were also prepared. Different characterization techniques indicated the hollow mesoporous and crystalline morphology of the prepared spheres with Au NPs. Hollow anatase spheres with Au NPs indicated enhanced harvesting of visible light and therefore demonstrated efficient catalytic activity toward the degradation of organic dyes under the irradiation of visible light as compared to bare TiO2 spheres. 相似文献
11.
采用循环伏安法和表面增强拉曼散射现场研究了酸性溶液中4-氨基苯硫酚(PATP)在金电极表面的电化学转变过程, 并结合密度泛函理论(DFT)对光谱进行了指认, 由此确定电极表面的最终产物. 研究结果表明, PATP分子在电极表面首先氧化为阳离子自由基, 该自由基与邻近的分子通过头尾相接生成二聚体4'-巯基-N-苯基苯醌二亚胺, 随后发生水解反应生成4'-巯基-N-苯基苯醌单亚胺. 用DFT在B3LYP/6-311+G** (C, N, S, H)/ LANL2DZ (Au)水平上计算模拟4'-巯基-N-苯基苯醌二亚胺在金表面的拉曼光谱, 结果与所获得的表面拉曼光谱较好吻合, 平均相对偏差约为2.1%. 相似文献
12.
Shedding Light on the Extinction‐Enhancement Duality in Gold Nanostar‐Enhanced Raman Spectroscopy 下载免费PDF全文
Dr. Ming Li Dr. Jeon Woong Kang Dr. Ramachandra Rao Dasari Prof. Ishan Barman 《Angewandte Chemie (International ed. in English)》2014,53(51):14115-14119
Surface‐enhanced Raman spectroscopy (SERS) has evolved from an esoteric physical phenomenon to a robust and effective analytical method recently. The need of addressing both the field enhancement and the extinction of nanoparticle suspensions, however, has been underappreciated despite its substantive impact on the sensing performance. A systematic experimental investigation of SERS enhancement and attenuation is performed in suspensions of gold nanostars, which exhibit a markedly different behavior in relation to conventional nanoparticles. The relationship is elucidated between the SERS enhancement and the localized surface plasmon resonance band, and the effect of the concentration of the gold nanostars on the signal propagation is investigated. It is shown that an optimal concentration of gold nanostars exists to maximize the enhancement factor (EF), and the maximum EF occurs when the LSPR band is blue‐shifted from the excitation wavelength rather than at the on‐resonance position. 相似文献
13.
To explore the mechanisms in Surface‐enhanced Raman Scattering (SERS) measurements, silver nanoparticles (AgNPs) were first prepared by a silver mirror reaction to form different particle sizes and different distributions on glass substrates. After the resulting surfaces were probed with molecules of p‐Amino‐thiophenol (pATP), p‐Nitrothiophenol (pNTP), and p‐Mercaptobenzoic acid (pMBA) individually, the substrates were placed into reaction solutions to grow additional AgNPs. In this way, probe molecules could be trapped between two nanoparticles, possibly having the so‐called “hot spot” effect. To examine the variations of morphologies of AgNPs in each of the steps, the substrates were examined by field‐emission scanning electron microscope (FE‐SEM). The morphologies also were correlated with the SERS signals. Two bands in the SERS spectra of probe molecules were selected as indications of the enhancements from electromagnetic (EM) effect and charge‐transfer (CT). Results indicate that the SERS signals from the EM effect were increased ca. 5 times after growing additional AgNPs on the molecule‐modified AgNPs substrates. The SERS signals from CT effect were increased two orders of magnitude after growing additional AgNPs. The increase of enhancement for molecules between AgNPs was caused mostly by CT effect. Based on the effect of particle size and distribution of the AgNPs, the EM effect was strongly influenced by the particle size of the AgNPs, while the CT effect was less sensitive to the variation of the morphologies of the AgNPs. 相似文献
14.
合成了碳纳米管和金纳米颗粒的复合物, 测量了水溶液相中复合物的表面增强拉曼光谱, 结果表明, 碳纳米管的巯基化修饰可以提高碳纳米管与金纳米颗粒复合的效率, 随着金纳米颗粒负载量的增加, 碳纳米管的拉曼信号逐渐增强. 加入己二胺分子可以减小金纳米颗粒之间的距离使表面增强效应更显著, 碳纳米管的拉曼光谱得到进一步的增强. 还可进一步在复合体系中加入对巯基苯胺和罗丹明B等小分子拉曼探针, 利用金纳米颗粒的表面增强效应, 这种多元复合体系有望作为多通道拉曼成像探针材料. 相似文献
15.
Probing Interfacial Electronic and Catalytic Properties on Well‐Defined Surfaces by Using In Situ Raman Spectroscopy 下载免费PDF全文
Ya‐Hao Wang Miao‐Miao Liang Yue‐Jiao Zhang Shu Chen Petar Radjenovic Dr. Hua Zhang Prof. Zhi‐Lin Yang Prof. Xiao‐Shun Zhou Prof. Zhong‐Qun Tian Prof. Jian‐Feng Li 《Angewandte Chemie (International ed. in English)》2018,57(35):11257-11261
Heterogeneous metal interfaces play a key role in determining the mechanism and performance of catalysts. However, in situ characterization of such interfaces at the molecular level is challenging. Herein, two model interfaces, Pd and Pt overlayers on Au single crystals, were constructed. The electronic structures of these interfaces as well as effects of crystallographic orientation on them were analyzed by shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) using phenyl isocyanide (PIC) as a probe molecule. A clear red shift in the frequency of the C≡N stretch (νNC) was observed, which is consistent with X‐ray photoelectron spectroscopy (XPS) data and indicates that the ultrathin Pt and Pd layers donate their free electrons to the Au substrates. Furthermore, in situ electrochemical SHINERS studies showed that the electronic effects weaken Pt?C/Pd?C bonds, leading to improved surface activity towards CO electrooxidation. 相似文献
16.
Na Li Dr. Pengxiang Zhao Prof. Didier Astruc 《Angewandte Chemie (International ed. in English)》2014,53(7):1756-1789
Anisotropic gold nanoparticles (AuNPs) have attracted the interest of scientists for over a century, but research in this field has considerably accelerated since 2000 with the synthesis of numerous 1D, 2D, and 3D shapes as well as hollow AuNP structures. The anisotropy of these nonspherical, hollow, and nanoshell AuNP structures is the source of the plasmon absorption in the visible region as well as in the near‐infrared (NIR) region. This NIR absorption is especially sensitive to the AuNP shape and medium and can be shifted towards the part of the NIR region in which living tissue shows minimum absorption. This has led to crucial applications in medical diagnostics and therapy (“theranostics”), especially with Au nanoshells, nanorods, hollow nanospheres, and nanocubes. In addition, Au nanowires (AuNWs) can be synthesized with longitudinal dimensions of several tens of micrometers and can serve as plasmon waveguides for sophisticated optical devices. The application of anisotropic AuNPs has rapidly spread to optical, biomedical, and catalytic areas. In this Review, a brief historical survey is given, followed by a summary of the synthetic modes, variety of shapes, applications, and toxicity issues of this fast‐growing class of nanomaterials. 相似文献
17.
基于聚苯乙烯微球的拉曼增强效应及其应用于金单晶表面单层分子的检测 总被引:1,自引:0,他引:1
利用在样品表面上组装聚苯乙烯微球, 可以使得表面拉曼信号得到增强. 系统考察了增强效应与微球粒子尺寸的依赖关系, 发现当微球直径为3.00 μm 时, 拉曼信号的增强效应最强, 可以达到约5倍的增强. 进一步利用聚苯乙烯微球的增强效应, 获得了单层吸附在Au(111)表面上具有共振增强效应的异氰基孔雀石绿分子的拉曼信号, 得到约20倍的信号净增强, 相当于约3个数量级的拉曼增强效应, 表明利用这种方法可以显著提高单晶表面吸附分子的检测灵敏度. 这种增强效应主要是由于激光在透明微球的作用下, 在微球底部产生纳米光束流, 从而形成高度局域化的电磁场, 使拉曼散射过程得到极大的增强. 初步探讨了两种类型样品表面获得不同的增强效应的原因. 相似文献
18.
Xiumei Lin 《Acta Physico》2008,24(11):1941-1945
By assembling polystyrene microspheres on a sample surface, the surface Raman signal could be enhanced. The dependence of the enhancement effect on the size of microspheres was systematically investigated and it was found that microspheres with a diameter of 3.00 μm showed the highest enhancement of ca 5 folds. By utilizing the enhancement effect of the microspheres, the surface Raman intensity of malachite green isothiocyanate (MGITC) adsorbed on Au(111) surface could be enhanced by 20 folds, indicating that this method could effectively improve the detection sensitivity of surface Raman spectroscopy for the adsorbed species on single crystal surface. The later signal increment corresponds to the Raman enhancement effect of nearly 3 orders of magnitude. The enhancement effect is mainly owing to the formation of nanojets when a laser is focused on the microspheres of appropriate diameter. The formation of nanojets will lead to the highly localized electromagnetic field, which will then significantly enhance the Raman process in the nanojets. The main reason for obtaining different enhancements on two types of samples was analyzed. 相似文献
19.
Carl Mensch Dr. Robert Pendrill Prof. Dr. Göran Widmalm Prof. Dr. Christian Johannessen 《Chemphyschem》2014,15(11):2252-2254
Raman and Raman optical activity (ROA) spectroscopy are used to study the solution‐phase structure of the glycan moiety of the protein ribonuclease B (RNase B). Spectral data of the intact glycan moiety of RNase B is obtained by subtracting high‐quality spectral data of RNase A, the non‐glycosylated form of the RNase, from the spectra of the glycoprotein. The remaining difference spectra are compared to spectra generated from Raman and ROA data of the constituent disaccharides of the RNase glycan, achieving convincing spectral overlap. The results show that ROA spectroscopy is able to extract detailed spectral data of the glycan moieties of proteins, provided that the non‐glycosylated isoform is available. Furthermore, good comparison between the full glycan spectrum and the regenerated spectra based on the disaccharide data lends great promise to ROA as a tool for the solution‐phase structural analysis of this structurally elusive class of biomolecules. 相似文献