首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photophysical and photochemical properties of (OC‐6‐33)‐(2,2′‐bipyridine‐κN1,κN1′)tricarbonyl(9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylato‐κO)rhenium (fac‐[ReI(aq‐2‐CO2)(2,2′‐bipy)(CO)3]) were investigated and compared to those of the free ligand 9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylate (=anthraquinone‐2‐carboxylate) and other carboxylato complexes containing the (2,2′‐bipyridine)tricarbonylrhenium ([Re(2,2′‐bipy)(CO)3]) moiety. Flash and steady‐state irradiations of the anthraquinone‐derived ligand (λexc 337 or 351 nm) and of its complex reveal that the photophysics of the latter is dominated by processes initiated in the Re‐to‐(2,2′‐bipyridine) charge‐transfer excited state and 2,2′‐bipyridine‐ and (anthraquinone‐2‐carboxylato)‐centered intraligand excited states. In the reductive quenching by N,N‐diethylethanamine (TEA) or 2,2′,2″‐nitrilotris[ethanol] TEOA, the reactive states are the 2,2′‐bipyridine‐centered and/or the charge‐transfer excited states. The species with a reduced anthraquinone moiety is formed by the following intramolecular electron transfer, after the redox quenching of the excited state: [ReI(aq−2−CO2)(2,2′‐bipy.)(CO)3]⇌[ReI(aq−2−CO2.)(2,2′‐bipy)(CO)3] The photophysics, particularly the absence of a ReI‐to‐anthraquinone charge‐transfer excited state photochemistry, is discussed in terms of the electrochemical and photochemical results.  相似文献   

2.
Complexes [Re(CO)3(N‐RIm)3]OTf (N‐RIm=N‐alkylimidazole, OTf=trifluoromethanesulfonate; 1 a – d ) have been straightforwardly synthesised from [Re(OTf)(CO)5] and the appropriate N‐alkylimidazole. The reaction of compounds 1 a – d with the strong base KN(SiMe3)2 led to deprotonation of a central C? H group of an imidazole ligand, thus affording very highly reactive derivatives. The latter can evolve through two different pathways, depending on the nature of the substituents of the imidazole ligands. Compound 1 a contains three N‐MeIm ligands, and its product 2 a features a C‐bound imidazol‐2‐yl ligand. When 2 a is treated with HOTf or MeOTf, rhenium N‐heterocyclic carbenes (NHCs) 3 a or 4 a are afforded as a result of the protonation or methylation, respectively, of the non‐coordinated N atom. The reaction of 2 a with [AuCl(PPh3)] led to the heterobimetallic compound 5 , in which the N‐heterocyclic ligand is once again N‐bound to the Re atom and C‐coordinated to the gold fragment. For compounds 1 b – d , with at least one N‐arylimidazole ligand, deprotonation led to an unprecedented reactivity pattern: the carbanion generated by the deprotonation of the C2? H group of an imidazole ligand attacks a central C? H group of a neighbouring N‐RIm ligand, thus affording the product of C? C coupling and ring‐opening of the imidazole moiety that has been attacked ( 2 c , d ). The new complexes featured an amido‐type N atom that can be protonated or methylated, thus obtaining compounds 3 c , d or 4 c , d , respectively. The latter reaction forces a change in the disposition of the olefinic unit generated by the ring‐opening of the N‐RIm ligand from a cisoid to a transoid geometry. Theoretical calculations help to rationalise the experimental observation of ring‐opening (when at least one of the substituents of the imidazole ligands is an aryl group) or tautomerisation of the N‐heterocyclic ligand to afford the imidazol‐2‐yl product.  相似文献   

3.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

4.
We have prepared and characterized a series of osmium complexes [Os2(CO)4(fpbpy)2] ( 1 ), [Os(CO)(fpbpy)2] ( 2 ), and [Os(fpbpy)2] ( 3 ) with tridentate 6‐pyrazol‐3‐yl 2,2′‐bipyridine chelating ligands. Upon the transformation of complex 2 into 3 through the elimination of the CO ligand, an extremely large change in the phosphorescence wavelength from 655 to 935 nm was observed. The results are rationalized qualitatively by the strong π‐accepting character of CO, which lowers the energy of the osmium dπ orbital, in combination with the lower degree of π conjugation in 2 owing to the absence of one possible pyridine‐binding site. As a result, the energy gap for both intraligand π–π* charge transfer (ILCT) and metal‐to‐ligand charge transfer (MLCT) is significantly greater in 2 . Firm support for this explanation was also provided by the time‐dependent DFT approach, the results of which led to the conclusion that the S0→T1 transition mainly involves MLCT between the osmium center and bipyridine in combination with pyrazolate‐to‐bipyridine 3π–π* ILCT. The relatively weak near‐infrared emission can be rationalized tentatively by the energy‐gap law, according to which the radiationless deactivation may be governed by certain low‐frequency motions with a high density of states. The information provided should allow the successful design of other emissive tridentate metal complexes, the physical properties of which could be significantly different from those of complexes with only a bidentate chromophore.  相似文献   

5.
The synthesis and characterization of two dinuclear complexes, namely fac‐hexacarbonyl‐1κ3C,2κ3C‐(pyridine‐1κN)[μ‐2,2′‐sulfanediyldi(ethanethiolato)‐1κ2S1,S3:2κ3S1,S2,S3]dirhenium(I), [Re2(C4H8S3)(C5H5N)(CO)6], ( 1 ), and tetraethylammonium fac‐tris(μ‐2‐methoxybenzenethiolato‐κ2S:S)bis[tricarbonylrhenium(I)], (C8H20N)[Re2(C7H7OS)3(CO)6], ( 2 ), together with two mononuclear complexes, namely (2,2′‐bithiophene‐5‐carboxylic acid‐κ2S,S′)bromidotricarbonylrhenium(I), ( 3 ), and bromidotricarbonyl(methyl benzo[b]thiophene‐2‐carboxylate‐κ2O,S)rhenium(I), ( 4 ), are reported. Crystals of ( 1 ) and ( 2 ) were characterized by X‐ray diffraction. The crystal structure of ( 1 ) revealed two Re—S—Re bridges. The thioether S atom only bonds to one of the ReI metal centres, while the geometry of the second ReI metal centre is completed by a pyridine ligand. The structure of ( 2 ) is characterized by three S‐atom bridges and an Re…Re nonbonding distance of 3.4879 (5) Å, which is shorter than the distance found for ( 1 ) [3.7996 (6)/3.7963 (6) Å], but still clearly a nonbonding distance. Complex ( 1 ) is stabilized by six intermolecular hydrogen‐bond interactions and an O…O interaction, while ( 2 ) is stabilized by two intermolecular hydrogen‐bond interactions and two O…π interactions.  相似文献   

6.
Complexes [ML3]2+ of the bidentate ligand 2‐(1H‐imidazol‐2‐yl)pyridine were prepared with iron(II), cobalt(II), and ruthenium(II). The electronic spectra suggest the ligand to be a weaker σ‐donor and π‐acceptor than the closely related 2,2′‐bipyridine. The complexes are readily deprotonated by addition of base, and the effect of the deprotonation is to lower the MIII/MII redox potential by roughly 900 mV. This is roughly 75% of the drop observed for related complexes of 2,6‐di‐1H‐imidazol‐2‐ylpyridine, and suggests the effect to be largely coulombic in origin.  相似文献   

7.
Complexes of the type [Ru(bxbg)2(N‐N)]2+, where N‐N denotes 2,2′‐bipyridine (bpy) ( 1 ), 1,10‐phenanthroline (phen) ( 2 ), dipyrido[3,2‐d:2′,3‐f] quinoxaline (dpq) ( 3 ), and dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) ( 4 ), incorporating bis(o‐xylene)bipyridine‐glycoluril (bxbg) as an ancillary “molecular clip” ligand, have been synthesized and characterized. These ruthenium(II) complexes of bis(o‐xylene)bipyridine‐glycoluril self‐associate in water through specific molecular recognition processes to form polycationic arrays. These arrays containing electrostatic binders as well as intercalator ligands at micromolar doses rapidly condense free DNA into globular nanoparticles of various sizes. The DNA condensation induced by these complexes has been investigated by electrophoretic mobility assay, dynamic light scattering, and transmission electron microscopy. The cellular uptake of complex–DNA condensates and the low cytotoxicity of these complexes satisfy the requirements of a gene vector.  相似文献   

8.
The two neutral complexes [Re(CO)3(H−1taci)] ( 1 ) and [ReO3(H−1taci)] ( 2 ) (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol) were synthesized from the conventional ReI and ReVII precursors (Et4N)2[ReBr3(CO)3] and [ReO3(OSnMe3)]. The crystal structures of 1 and 2 , which were determined by single crystal X‐ray analysis, are virtually isomorphous. Both compounds crystallize in the orthorhombic space group Pnma, Z=4; 1 : a=14.806(3), b=8.466(2), c=9.781(2) Å, 2 : a=13.050(2), b=8.732(1), c=9.061(1) Å. In both complexes, the monodeprotonated H−1taci ligand is bonded to the Re center in an N,O,N‐coordination mode. The resulting molecular Cs symmetry is retained in the crystal structure and confirmed by IR spectroscopy of solid‐state samples. The observed binding mode of the ligand is discussed in terms of steric and electronic effects.  相似文献   

9.
Synthesis, Structure, and Reactivity of η1‐ and η3‐Allyl Rhenium Carbonyls In (η3‐C3H5)Re(CO)4 one CO ligand can be substituted by PPh3, pyridine, isocyanide and benzonitrile. With 1,2‐bis(diphenylphosphino)ethylene, 1,1′‐bis(diphenylphosphino)ferrocene and 1,2‐bis(4‐pyridyl)ethane dinuclear ligand bridged complexes are obtained. The η3‐η1 conversion of the allyl ligand occurs on reaction of (η3‐C3H5)Re(CO)4 with the bidendate ligands 1,2‐bis(diphenylphosphino)ethane and 1,3‐bis(diphenylphosphino)propane and with 2,2′‐bipyridine (L–L) which gives the complexes (η1‐C3H5)Re(CO)3(L–L). By reaction of (η3‐C3H5)Re(CO)4 with bis(diphenylphosphino)methane the allyl group is protonated and under elemination of propene the complex (OC)3Re(Ph2PCHPPh2)(η1‐Ph2PCH2PPh2) ( 19 ) with a diphosphinomethanide ligand is formed. On heating solutions of (η3‐C3H5)Re(CO)4 and (η3‐C3H5)Re(CO)3(CN‐2,5‐Me2C6H3) ( 5 ) in methanol the methoxy bridged compounds Re4(CO)12(OH)(OMe)3 and Re2(CO)4(CN‐2,5‐Me2C6H3)4(μ‐OMe)2 ( 20 ) were isolated. The crystal structures of (η3‐C3H5)Re(CO)3(CNCH2SiMe3) ( 4 ), [(η3‐C3H5)(OC)3Re]2‐ (μ‐bis‐(diphenylphosphino)ferrocene) ( 8 ), (η1‐C3H5)Re(CO)3‐ (bpy) ( 14 ), of 19 , 20 and of (OC)3Re‐[Ph2P(CH2)3PPh2]Cl ( 16 ) were determined by X‐ray diffraction.  相似文献   

10.
Two heterobimetallic Zn‐Nd phenylene‐bridged Schiff‐base ligands complexes [ZnNd L1 (Py)(NO3)3] ( 1 ) and [Zn L2 Nd(Py)(NO3)3]·MeCN ( 2 ) (Py = pyridine, H2L1 = N,N′‐bis‐ (3‐methoxy‐salicylidene)phenylene‐1,2‐diamine, H2L2 = N,N′‐bis‐5‐bromo‐3‐methoxy‐salicylidene)phenylene‐1,2‐diamine) were obtained. Both 1 and 2 were structurally characterized by X‐ray crystallography, and their near‐infrared (NIR) luminescent properties were determined. For the two complexes, the occupation of pyridine at the axial position of 3d Zn2+ ions could effectively prevent luminescent quenching arising from OH‐, NH‐ or CH oscillators of the solvates around the 4f Nd3+ ions, and the heavy‐atom (Br) effect of the Schiff‐base ligands on their NIR luminescent properties is also discussed.  相似文献   

11.
A series of tricarbonyl rhenium(I) complexes of the type fac‐[ReI(CO)3(ppl)(L)]0/+, where ppl is pyrazino[2,3‐f][1,10]phenanthroline, and where L is Cl?, TfO?, 4‐(tert‐butyl)pyridine (tBu‐py), 4‐methoxypyridine (MeO‐py), 4,4′‐bipyridyl (bpy), or 10‐(picolin‐4‐yl)phenothiazine (pptz), were synthesized and fully characterized. In all complexes, an increment in the electron‐acceptor properties of ppl compared to the free ligand was observed. This effect was more significant for pyridine‐type ligands, especially for pptz, compared to Cl? or TfO?. The properties of fac‐[Re(CO)3(ppl)(pptz)]PF6 were compared with those of the analogous compound fac‐[Re(CO)3(dppz)(pptz)]PF6, where dppz is dipyrido(3,2‐a : 2′,3′‐c)phenazine, the goal being to generate long‐lived excited charge‐transfer (CT) states. In this respect, fac‐[Re(CO)3(ppl)(pptz)]PF6 seems to be a promising candidate.  相似文献   

12.
The title compound, [Cu(ClO4)(C5H6N2)2(C12H12N2)]ClO4, was prepared by in situ partial ligand substitution between 3‐amino­pyridine and 4,4′‐dimethyl‐2,2′‐bipyridine at room temperature. The central copper(II) ion is five‐coordinated by one bidentate 4,4′‐dimethyl‐2,2′‐bipyridine mol­ecule, two monodentate pyridine‐coordinated 3‐amino­pyridine mol­ecules and one apical O atom from the perchlorate counter‐ion. Inter­molecular N—H⋯O and C—H⋯O hydrogen‐bonding inter­actions form a hydrogen‐bond‐sustained network.  相似文献   

13.
Four organotin complexes with 2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2dcbp: (Ph3n)2(dcbp) 1 , [(PhCH2)3n]2(dcbp) ⋅ 2CH3OH 2 , [(Me3Sn)2(dcbp)]n 3 , [(Bu3Sn)2(dcbp)]n 4 have been synthesized. The complexes 1–4 were characterized by elemental, IR, 1H, 13C, 119n NMR, and X‐ray crystallographic analyses. Crystal structures show that complex 1 is a monomer with one ligand coordinated to two triorganotin moieties, and a 1D infinite polymeric chain generates via intermolecular C H⋅⋅⋅N hydrogen bond; complex 2 is also a monomer and forms a 2D network by intermolecular O–H⋅⋅⋅O weak interaction; both of complexes 3 and 4 form 2D network structures where 2,2′‐bipyridine‐4,4′‐dicarboxylate acts as a tetradentate ligand coordinated to trimethyltin and tri‐n‐butyltin ions, respectively. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:19–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20506  相似文献   

14.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Reactions of (NEt4)2[Re(CO)3Br3] with N‐heterocyclic thiols such as 2‐mercaptobenzimidazole (H2Sbenzim), 2‐mercaptothiazoline (HSthiaz), or 5‐mercapto‐1‐methyltetrazole (HSmetetraz) give rhenium(I) complexes of various compositions: (NEt4)[Re(CO)3Br2(H2Sbenzim)], [Re(CO)3(HSthiaz)3]Br, and (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2]. Corresponding reactions with 2‐mercaptopyridine (HSpy) and bis(2‐pyridine)diselenide [(Sepy)2] did not give defined products in reasonable yields, whereas [Re(CO)5Br] reacts with HSpy and (Sepy)2 with formation of [Re(CO)3(HSpy)3]Br and [Re2(CO)6(Sepy)2], respectively. All reactions were performed without the addition of a supporting base and the sulfur‐containing organic ligands are coordinated in their thione forms with the exception of Smetetraz in its μS‐bridging coordination mode in (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2], which can be regarded as thiolate. The bonding mode of the selenium containing ligands in the dimeric compound [Re2(CO)6(Sepy)2] (C–Se distance: 1.93 Å) can also best be described as selenolate. The products are stable on air at an ambient temperature. They were studied spectroscopically and by X‐ray diffraction.  相似文献   

16.
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature.  相似文献   

17.
A series of trans‐(Cl)‐[Ru(L)(CO)2Cl2]‐type complexes, in which the ligands L are 2,2′‐bipyridyl derivatives with amide groups at the 5,5′‐positions, are synthesized. The C‐connected amide group bound to the bipyridyl ligand through the carbonyl carbon atom is twisted with respect to the bipyridyl plane, whereas the N‐connected amide group is in the plane. DFT calculations reveal that the twisted structure of the C‐connected amide group raises the level of the LUMO, which results in a negative shift of the first reduction potential (Ep) of the ruthenium complex. The catalytic abilities for CO2 reduction are evaluated in photoreactions (λ>400 nm) with the ruthenium complexes (the catalyst), [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine; the photosensitizer), and 1‐benzyl‐1,4‐dihydronicotinamide (the electron donor) in CO2‐saturated N,N‐dimethylacetamide/water. The logarithm of the turnover frequency increases by shifting Ep a negative value until it reaches the reduction potential of the photosensitizer.  相似文献   

18.
Aromatized cationic [(PNN)Re(π acid)(O)2]+ ( 1 ) and dearomatized neutral [(PNN*)Re(π acid)(O)2] ( 2 ) complexes (where π acid=CO ( a ), tBuNC ( b ), or (2,6‐Me2)PhNC ( c )), possessing both π‐donor and π‐acceptor ligands, have been synthesized and fully characterized. Reaction of [(PNN)Re(O)2]+ ( 4 ) with lithiumhexamethyldisilazide (LiHMDS) yield the dearomatized [(PNN*)Re(O)2] ( 3 ). Complexes 1 and 2 are prepared from the reaction of 4 and 3 , respectively, with CO or isocyanides. Single‐crystal X‐ray structures of 1 a and 1 b show the expected trans‐dioxo structure, in which the oxo ligands occupy the axial positions and the π‐acidic ligand occupies the equatorial plane in an overall octahedral geometry about the rhenium(V) center. DFT studies revealed the stability of complexes 1 and 2 arises from a π‐backbonding interaction between the dxy orbital of rhenium, the π orbital of the oxo ligands, and the π* orbital of CO/isocyanide.  相似文献   

19.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

20.
4,4’‐Disubstituted‐2,2′‐bipyridine ligands coordinated to MoII and ReI cationic fragments become dearomatized by an intramolecular nucleophilic attack from a deprotonated N‐alkylimidazole ligand in cis disposition. The subsequent protonation of these neutral complexes takes place on a pyridine carbon atom rather than at nitrogen, weakening an aromatic C?C bond and affording a dihydropyridyl moiety. Computational calculations allowed for the rationalization of the formation of the experimentally obtained products over other plausible alternatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号