首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factors that control the chemoselectivity of palladium‐catalyzed cyclization reactions of (2‐iodoanilino)carbonyl compounds have been explored by an extensive experimental computational (DFT) study. It was found that the selectivity of the process, that is, the formation of fused six‐ versus five‐membered rings, can be controlled by the proper selection of the initial reactant, reaction conditions, and additives. Thus, esters or amides produce ketones by a nucleophilic addition process, whereas the addition of PhO? ions leads to the formation of indolines by an α‐arylation reaction. In contrast, the corresponding ketone reactants yield a mixture of both reaction products, the ratio of which depends on the base used, in the presence of phenol. The outcome of the processes can be explained by the formation of a common four‐membered palladacycle intermediate from which the competitive nucleophilic addition and α‐arylation reactions occur. The remarkable effect of phenol in the process, which makes the α‐arylation reaction easier, favored the formation of enol complexes, which are stabilized by an intramolecular hydrogen bond between the hydroxy group of the enol moiety and the oxygen atom of the phenoxy ligand. Moreover, the chemoselectivy of the process can be also controlled by the addition of bidendate ligands that lead to the almost exclusive formation of indoles at expenses of the corresponding alcohols.  相似文献   

2.
A new palladium‐catalyzed reductive [5+1] cycloaddition of 3‐acetoxy‐1,4‐enynes with CO, enabled by hydrosilanes, has been developed for delivering valuable functionalized phenols. This methodology employs hydrosilanes as the external reagent to facilitate the [5+1] carbonylative benzannulation. The reaction is a conceptually and mechanistically novel carbonylative cycloaddition route for the construction of substituted phenols, through the formation of four new chemical bonds, with excellent functional‐group tolerance.  相似文献   

3.
A series of substituted 3‐azabicyclo[4.1.0]hept‐4‐ene derivatives were prepared and analysed by cyclic voltammetry. Preparative aerobic electrochemical oxidation reactions were then carried out. Three original endoperoxides were isolated, characterised and subjected to antimalarial and cytotoxicity activity assays.  相似文献   

4.
5.
Calculating cyclization : Theoretical work directed towards the elucidation of the mechanisms of the gold‐, palladium‐, and lanthanum‐catalyzed oxycyclizations (5‐exo versus 6‐endo versus 7‐endo) of γ‐allenols has been pursued in close relationship with the experimental study (Part 1, accompanying paper) and has corroborated the bench results to provide a complete study of the reactivity of γ‐allenols under different metal‐catalyzed conditions.

  相似文献   


6.
Mixtures of [{PCy2(o‐biphenyl)}AuCl] and AgSbF6 catalyze the tandem cycloaddition/hydroarylation of 7‐aryl‐1,6‐enynes with electron‐rich arenes to form 6,6‐diarylbicyclo[3.2.0]heptanes in good yield under mild conditions. Experimental observations point to a mechanism involving gold‐catalyzed cycloaddition followed by silver‐catalyzed hydroarylation of a bicyclo[3.2.0]hept‐1(7)‐ene intermediate.  相似文献   

7.
Mes*‐substituted 2,3‐dimethyl‐1,4‐diphosphabuta‐1,3‐diene, 1,2‐diphenyl‐3,4‐diphosphinidenecyclobutene, 2,2‐bis(methylsulfanyl)‐1‐phosphaethene, and 3,3‐diphenyl‐1,3‐diphosphapropenes (Mes*=2,4,6‐tri‐tert‐butylphenyl) were employed as P ligands of gold(I) complexes. The (E,E)‐2,3‐dimethyl‐1,4‐diphosphabuta‐1,3‐diene functioned as a P2 ligand for digold(I) complex formation with or without intramolecular Au–Au contact, which depends on the conformation of the 1,3‐diphosphabuta‐1,3‐diene. The 1,2‐diphenyl‐3,4‐diphosphinidenecyclobutene, which has a rigid s‐cis P?C? C?P skeleton, afforded the corresponding digold(I) complexes with a slight distortion of the planar diphosphinidenecyclobutene framework and intramolecular Au–Au contact. In the case of the 2,2‐bis(methylsulfanyl)‐1‐phosphaethene, only the phosphorus atom coordinated to gold, and the sulfur atom showed almost no intra‐ or intermolecular coordination to gold. On the other hand, the 1,3‐diphosphapropenes behaved as nonequivalent P2 ligands to afford the corresponding mono‐ and digold(I) complexes. Some phosphaalkene–gold(I) complexes showed catalytic activity for 1,6‐enyne cycloisomerization without cocatalysts such as silver hexafluoroantimonate.  相似文献   

8.
Chemo‐, regio‐ and stereocontrolled palladium‐catalyzed preparations of enantiopure morpholines, oxocines, and dioxonines have been developed starting from 2‐azetidinone‐tethered γ,δ‐, δ,ε‐, and ε,ζ‐allendiols. The palladium‐catalyzed cyclizative coupling reaction of γ,δ‐allendiols 2 with allyl bromide or lithium bromide was effective as 8‐endo cyclization by attack of the primary hydroxy group to the terminal allene carbon to afford enantiopure functionalized oxocines; whereas the palladium‐catalyzed cyclizative coupling reaction of 2‐azetidinone‐tethered ε,ζ‐allendiols 4 furnished dioxonines 16 through a totally chemo‐ and regioselective 9‐endo oxycyclization. By contrast, the palladium‐catalyzed cyclizative coupling reaction of 2‐azetidinone‐tethered δ,ε‐allendiols 3 with aryl and alkenyl halides exclusively generated six‐membered‐ring compounds 14 a and 15 a . These results could be explained through a 6‐exo cyclization by chemo‐ and regiospecific attack of the secondary hydroxy group to the internal allene carbon. Chemo‐ and regiocontrol issues are mainly influenced by the length of the tether rather than by the nature of the metal catalysts and substituents. This reactivity can be rationalized by means of density functional theory calculations.  相似文献   

9.
Cationic Fe complexes of the general type [(Ph3P)2Fe(CO)(NO)]X (X=BF4, BArF4) catalyze the redox‐neutral cycloisomerization of 1,6‐ and 1,7‐enyneacetates to afford bicyclic cyclobutanes under mild conditions in good yields and diastereoselectivities.  相似文献   

10.
Reported is the first example of a rhodium‐mediated β‐sulfide elimination, which represents a new mode of reactivity for late‐transition‐metal chemistry. This serendipitous discovery facilitates an ene‐cycloisomerization of allylic‐sulfide‐containing alkenylidenecyclopropanes (ACPs) to afford five‐membered carbo‐ and heterocyclic rings with concomitant intramolecular thioether migration. Interestingly, similar selectivity is obtained with both E‐ and Z‐allylic sulfides and the reaction is also feasible with an allylic selenide. Mechanistic studies are consistent with an inner‐sphere transfer of the sulfide, which is remarkable given the propensity for sulfides to poison transition‐metal catalysts. Finally, this type of atom‐economical rearrangement is envisioned to prompt the development of related processes given the utility of sulfides in target‐directed synthesis.  相似文献   

11.
12.
13.
Controlled preparation of tri‐ and tetrasubstituted furans, as well as carbazoles has been achieved through chemo‐ and regioselective metal‐catalyzed cyclization reactions of cumulenic alcohols. The gold‐ and palladium‐catalyzed cycloisomerization reactions of cumulenols, including indole‐tethered 2,3,4‐trien‐1‐ols, to trisubstituted furans was effective, due to a 5‐endo‐dig oxycyclization by attack of the hydroxy group onto the central cumulene double bond. In contrast, palladium‐catalyzed heterocyclization/coupling reactions with 3‐bromoprop‐1‐enes furnished tetrasubstituted furans. Also studied was the palladium‐catalyzed cyclization/coupling sequence involving protected indole‐tethered 2,3,4‐trien‐1‐ols and 3‐bromoprop‐1‐enes that exclusively generated trisubstituted carbazole derivatives. These results could be explained through a selective 6‐endo‐dig cumulenic hydroarylation, followed by aromatization. DFT calculations were carried out to understand this difference in reactivity.  相似文献   

14.
15.
16.
Ab initio multiconfigurational CASSCF/MP2 method with the 6‐31G* basis set has been employed in studying the photochemistry of bicyclo[4.1.0]hept‐2‐ene upon direct photolysis. Our calculations involve the ground state (S0) and excited states (S1, T1, and T2). The ground‐state reaction pathways corresponding to the formation of the six products derived from bicyclo[4.1.0]hept‐2‐ene via two important diradical intermediates (D1 and D2) were mapped. It was found that there are various crossing points (conical intersections and singlet–triplet crossings) in the regions near D1 and D2. These crossing points imply that direct photolysis can lead to two possible radiationless relaxation routes: (1) S1 → S0, (2) S1 → T2 → T1 → S0. Computation indicates that the second route is not a competitive path with the first route during direct photolysis. The first route is initiated by barrierless cyclopropane bond cleavage to form two singlet excited diradical intermediates, followed by efficient decay to the ground‐state surface via three S1/S0 conical intersections in the regions near the diradical intermediates. All six ground‐state products can be formed via the three conical intersections almost without barrier after the decays. The barriers separating the diradical minima on S1 from the S1/S0 conical intersections were found to be very small with respect to the vertical excitation energy, which can explain why the product distribution is independent of excitation wavelength. Triplet surfaces are not involved in the first route, which agrees with the fact that the product contribution was unchanged by the addition of naphthalene. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
18.
Another way to dienes : The ruthenium‐catalyzed 6‐endo‐cycloisomerization of 1,5‐enynes gives the corresponding 1,3‐cyclohexadienes in high to excellent yields. This novel synthetic and catalytic method constitutes another way to selectively prepare 1,3‐cyclohexadienes, this cyclic diene skeleton being a core subunit in many natural products and a useful building block for a variety of organic transformations.

  相似文献   


19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号