首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of early lanthanides, GeO2, and Na2WO4 in a NaOAc buffer results in large crown‐shaped polyoxometalates based on [Ln2GeW10O38]6? subunits. By using Ni2+ as a crystallizing agent, [Na?Ln12Ge6W60O228(H2O)24]35? ( Na?Ln12 ) hexamers formed by alternating β(1,5)/β(1,8) subunits were obtained for Ln=Pr, Nd. The addition of K+ led to a similar anion for Ln=Sm, namely, [K?Sm12Ge6W60O228(H2O)22]35? ( K?Sm12 ) and [K?K7Ln24Ge12W120O444(OH)12(H2O)64]52? ( K?Ln24 ) dodecamers that consist of a central core identical to K?Sm12 decorated with six external γ(3,4) subunits for Ln=Pr, Nd. These anions dissociate in water into hexameric cores and monomeric entities, as shown by ESI mass spectrometry. The former self‐assemble into spherical, hollow, and single‐layered blackberry‐type structures with radii of approximately 75 nm, as monitored by laser light scattering (LLS) and TEM techniques. Analogous studies performed for K?Nd24 in water/acetone mixtures show that the dodecamers remain stable and form in turn their own type of blackberries with sizes that increase from approximately 20 to 50 nm with increasing acetone content. This control over both the composition and size of the vesicle‐like assemblies is achieved for the first time by modifying the architecture of the species that undergoes supramolecular association through the solvent polarity.  相似文献   

2.
The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight‐coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3‐OH groups and carboxylate groups of isonicotinate and benzene‐1,2‐dicarboxylate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–π interactions into a three‐dimensional supramolecular framework.  相似文献   

3.
Three series of lanthanide coordination polymers, namely catena‐poly[[lanthanide(III)‐μ2‐(benzene‐1,2‐dicarboxylato)‐μ2‐[2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]] monohydrate], {[Ln(C8H4O4)(C22H14N3O2)]·H2O}n or {[Ln(1,2‐bdc)(L)]·H2O}n, with lanthanide (Ln) = dysprosium (Dy, 1 ), holmium (Ho, 2 ) and erbium (Er, 3 ), poly[bis(μ2‐benzene‐1,3‐dicarboxylato)bis[μ2‐2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]dilanthanide(III)], [Ln2(C8H4O4)2(C22H14N3O2)2]n or [Ln2(1,3‐bdc)2(L)2]n, with Ln = gadolinium (Gd, 4 ), Ho ( 5 ) and Er ( 6 ), and poly[(μ2‐benzene‐1,4‐dicarboxylato)[μ2‐2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]lanthanide(III)], [Ln(C8H4O4)(C22H14N3O2)]n or [Ln(1,4‐bdc)(L)]n, with Ln = Dy ( 7 ), Ho ( 8 ), Er ( 9 ) and ytterbium (Yb, 10 ), were synthesized under hydrothermal conditions and characterized by elemental analysis, IR and single‐crystal X‐ray diffraction. Compounds 1 – 3 possess one‐dimensional loop chains with Ln2(COO)2 units, which are extended into three‐dimensional (3D) supramolecular structures by π–π interactions. Isostructural compounds 5 and 6 show 6‐connected 3D networks, with pcu topology consisting of Ln2(COO)2 units. Compounds 7 – 10 display 8‐connected 3D frameworks with the topological type rob , consisting of Ln2(COO)2 units. The influence of the coordination orientations of the aromatic dicarboxylate groups on the crystal structures is discussed.  相似文献   

4.
Eight isomorphous metal‐organic frameworks: [Ln2(TATAB)2(H2O)(DMA)6]·5H2O (Ln = Sm ( 1 ), Eu ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ), Er ( 6 ), Tm ( 7 ), Yb ( 8 )); TATAB = 4,4′,4″‐s‐triazine‐1,3,5‐triyl‐p‐aminobenzoate, DMA = N,N‐dimethylacetamide), were synthesized by the self‐assembly of lanthanide ions, TATAB, DMA and H2O. Single‐crystal X‐ray crystallography reveals they are three dimensional frameworks with 2‐fold interpenetration. Solid‐state photoluminescence studies indicate ligand‐to‐metal energy transfer is more efficient for compounds 2 and 4 which exhibit intense characteristic lanthanide emissions at room temperature.  相似文献   

5.
Compounds [Fe3Ln(tea)2(dpm)6] ( Fe3Ln ; Ln= Tb–Yb, H3tea=triethanolamine, Hdpm=dipivaloylmethane) were synthesized as lanthanide(III)‐centered variants of tetrairon(III) single‐molecule magnets (Fe4) and isolated in crystalline form. Compounds with Ln=Tb–Tm are isomorphous and show crystallographic threefold symmetry. The coordination environment of the rare earth, given by two tea3? ligands, can be described as a bicapped distorted trigonal prism with D3 symmetry. Magnetic measurements showed the presence of weak ferromagnetic Fe ??? Ln interactions for derivatives with Tb, Dy, Ho, and Er, and of weak antiferromagnetic or negligible coupling in complexes with Tm and Yb. Alternating current susceptibility measurements showed simple paramagnetic behavior down to 1.8 K and for frequencies reaching 10000 Hz, despite the easy‐axis magnetic anisotropy found in Fe3Dy , Fe3Er , and Fe3Tm by single‐crystal angle‐resolved magnetometry. Relativistic quantum chemistry calculations were performed on Fe3Ln (Ln=Tb–Tm): the ground J multiplet of Ln3+ ion is split by the crystal field to give a ground singlet state for Tb and Tm, and a doublet for Dy, Ho, and Er with a large admixture of mJ states. Gyromagnetic factors result in no predominance of gz component along the threefold axis, with comparable gx and gy values in all compounds. It follows that the environment provided by the tea3? ligands, though uniaxial, is unsuitable to promote slow magnetic relaxation in Fe3Ln species.  相似文献   

6.
Pb8‐xLnxNa2(PO4)6 (x = 0—2.0; Ln: Y, La, Pr—Ho, Tm—Yb) with void structural channels are prepared by solid state reaction of PbO, Na2CO3, (NH4)2HPO4, and Ln oxides (Al2O3 crucible, 800 °C, 2—10 d).  相似文献   

7.
The multi-step dehydration and decomposition of trivalent lanthanum and lanthanide heptanediate polyhydrates were investigated by means of thermal analysis completed with infrared study. Further more, X-ray diffraction data for investigated heptanediate complexes of general stoichiometry Ln2(C7H10O4)3.nH2O (wheren=16 in the case of La, Ce, Pr, Nd and Sm pimelates,n=8 for Eu, Gd, Tb, Dy, Er and Tm pimelates,n=12 for Ho, Yb and Lu pimelates) were also reported.
Zusammenfassung Mittels TG, DTG, DTA wurde in Verbindung mit IR-Methoden der mehrstufige Dehydratations- und der Zersetzungsvorgang der Polyhydrate der PimelinsÄuresalze von dreiwertigem Lanthan und dreiwertigen Lanthanoiden untersucht. Röntgendiffraktionsdaten der untersuchten Heptandiat-Komplexe mit der allgemeinen Formel Ln2(C7H10O4)3 nH2O (mitn=16 für Ln=La, Ce, Pr, Nd und Sm,n=8 für Ln=Eu, Gd, Tb, Dy, Er und Tm sowien=12 für Ln=Ho, Yb und Lu) werden ebenfalls gegeben.
  相似文献   

8.
High‐quality rare‐earth fluorides, α‐NaMF4 (M=Dy, Ho, Er, Tm, Y, Yb, and Lu) nanocrystals and β‐NaMF4 (M=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y, Yb, and Lu) nanoarrays, have been synthesized by using oleic acid as a stabilizing agent through a facile hydrothermal method at 130–230 °C. The phase, shape, and size of the products are varied by careful control of synthetic conditions, including hydrothermal temperature and time, and the amounts of reactants and solvents. Tuning the hydrothermal temperature, time, and the amount of NaOH can cause the transformation from the cubic α‐NaMF4 to hexagonal phase β‐NaMF4. Upon adjustment of the amount of NaOH, NaF, M3+, and ethanol, the morphologies for the β‐NaMF4 nanoarrays can range from tube, rod, wire, and zigzagged rod, to flower‐patterned disk. Simultaneously, the size of the rare‐earth fluoride crystals is variable from 5 nm to several micrometers. A combination of “diffusion‐controlled growth” and the “organic–inorganic interface effect” is proposed to understand the formation of the nanocrystals. An ideal “1D growth” of rare‐earth fluorides is preferred at high temperatures and high ethanol contents, from which the tube‐ and rodlike nanoarrays with high aspect ratio are obtained. In contrast, the disklike β‐NaMF4 nanoarrays with low aspect ratios are produced by decreasing the ethanol content or prolonging the reaction time, an effect probably caused by “1D/2D ripening”. Multicolor up‐conversion fluorescence is also successfully realized in the Yb3+/Er3+ (green, red) and Yb3+/Tm3+ (blue) co‐doped α‐NaYF4 nanocrystals and β‐NaYF4 nanoarrays by excitation in the NIR region (980 nm).  相似文献   

9.
A new class of hexameric Ln12‐containing 60‐tungstogermanates, [Na(H2O)6?Eu12(OH)12(H2O)18Ge2(GeW10O38)6]39? ( Eu12 ), [Na(H2O)6?Gd12(OH)6(H2O)24Ge(GeW10O38)6]37? ( Gd12 ), and [(H2O)6?Dy12(H2O)24(GeW10O38)6]36? ( Dy12 ), comprising six di‐Ln‐embedded {β(4,11)‐GeW10} subunits was prepared by reaction of [α‐GeW9O34]10? with LnIII ions in weakly acidic (pH 5) aqueous medium. Depending on the size of the LnIII ion, the assemblies feature selective capture of two (for Eu12 ), one (for Gd12 ), or zero (for Dy12 ) extra GeIV ions. The selective encapsulation of a cationic sodium hexaaqua complex [Na(H2O)6]+ was observed for Eu12 and Gd12 , whereas Dy12 incorporates a neutral, distorted‐octahedral (H2O)6 cluster. The three compounds were characterized by single‐crystal XRD, ESI‐MS, photoluminescence, and magnetic studies. Dy12 was shown to be a single‐molecule magnet.  相似文献   

10.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

11.
Hydrothermal phase equilibria studies have been carried out in the Ln2O3-H2O systems (Ln = La, Pr, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) and the stability fields of the phases Ln(OH)3 LnOOH and Ln2O3-C have been established in the pressure-temperature range of 25000 psi and 900° C. The sequioxides Ln2O3-C are stable only in the last four systems of Er to Lu along with the Ln(OH)3 and LnOOH. The systems from Nd to Ho have only Ln(OH)3 and LnOOH as stable phases and those from La to Pr have only Ln(OH)3 as the stable phase. The unit cell parameters of trihydroxides deviate from the values reported in the literature and this is attributed to the contamination of CO2 in the starting material.  相似文献   

12.
A series of 12 dinuclear complexes [Ln2Cl6(μ‐4,4′‐bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, ( 1 – 12 , respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4′‐bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4‐bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln‐N‐MOFs ${\hbox{}{{\hfill 2\atop \hfill \infty }}}$ [Ln2Cl6(4,4′‐bipy)3] ? 2(4,4′‐bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, ( 1 , 4 – 8 ) were determined, showing an antenna effect through a ligand–metal energy transfer. The highest efficiency of luminescence is observed for the terbium‐based compound 7 displaying a high quantum yield (QY of 86 %). Excitation with UV light reveals typical emission colors of lanthanide‐dependent intra 4f–4f‐transition emissions in the visible range (TbIII: green, EuIII: red, SmIII: salmon red, DyIII: yellow). For the GdIII‐ and YIII‐containing compounds 6 and 1 , blue emission based on triplet phosphorescence is observed. Furthermore, ligand‐to‐metal charge‐transfer (LMCT) states, based on the interaction of Cl? with EuIII, were observed for the EuIII compound 5 including energy‐transfer processes to the EuIII ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln‐independent quantum yields in the related MOFs.  相似文献   

13.
Solvothermal combination of trivalent lanthanide metal precursors with 1, 2, 4, 5‐cyclohexanetetracarboxylic acid (L) ligand has afforded the preparation of a family of eight new coordination polymers [Ln4(L)3(H2O)10] · 7H2O (Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) ( 1 – 8 ). Structural analyses reveal that the 1, 2, 4, 5‐cyclohexanetetracarboxylic acid ligand with e,a,a,e (LI) conformation displays a μ4‐(κ3O, O, O5)(κ2O2,O2)(κ2O4,O4)‐bridging mode to generate 3D frameworks of complexes 1 – 8 and the α‐Po topology with the short Schläfli symbol {412.63} could be observed in complexes 1 – 8 . The near‐infrared luminescence properties were studied, and the results have shown that the HoIII, ErIII, and YbIII complexes emit typical near‐infrared luminescence in the solid‐state. Variable‐temperature magnetic susceptibility measurements of complexes 2 – 7 have shown that complex 2 (Gd) shows the ferromagnetic coupling between magnetic centers, whereas the complexes 3 – 7 show the antiferromagnetic coupling between magnetic centers. Additionally, the thermogravimetric analyses were discussed.  相似文献   

14.
A family of solution-stable polyanions [Na⊂{LnIII(H2O)}{WVIO(H2O)}PV4WVI26O98]12− (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) represent the first examples of polyoxometalates comprising a single lanthanide(III) or yttrium(III) ion in a rare trigonal prismatic O6 environment. Their synthesis exploits the reactivity of the organophosphonate-functionalized precursor [P4W24O92(C6H5PVO)2]16− with heterometal ions and yields hydrated potassium or mixed lithium/potassium salts of composition KxLnyH12–xy[Na⊂{Ln(H2O)}{WO(H2O)}P4W26O98]⋅nH2O⋅mLiCl (x=8.5–11; y=0–2; n=24–34; m=0–1.5). The Dy, Ho, Er and Yb derivatives are characterized by slow magnetization relaxation.  相似文献   

15.
By activation of the new host lattice Sr3La2W2O12 with the trivalent rare earth ions Nd, Eu, Ho, Er, Tm, Yb an intense emission in the visible and/or infrared region is obtained. Energy transfer from Er3+ to Tm3+ and Nd3+ to Yb3+ has been found to occur. The excitation, emission, and diffuse reflectance spectra are analyzed for Sr3La2W2O12: Ln3+ (Ln = Nd, Sm, Eu, Dy, Ho, Er, Tm, Yb).  相似文献   

16.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   

17.
The conditions of thermal decomposition of Tb(III), Dy, Ho, Er, Tm, Yb and Lu aconitates have been studied. On heating, the aconitates of heavy lanthanides lose crystallization water to yield anhydrous salts, which are then transformed into oxides. The aconitate of Tb(III) decomposes in two stages. First, the complex undergoes dehydration to form the anhydrous salt, which next decomposes directly to Tb4O7. The aconitates of Dy, Ho, Er, Tm, Yb and Lu decompose in three stages. On heating, the hydrated complexes lose crystallization water, yielding the anhydrous complexes; these subsequently decompose to Ln2O3 with intermediate formation of Ln2O2CO3.  相似文献   

18.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

19.
Redox transmetallation ligand exchange reactions involving a rare earth metal, 2,4,6‐trimethylphenol (HOmes), and a diarylmercurial afford rare earth aryloxo complexes, which are structurally characterized. Both the lanthanoid contraction and the identity of the reaction solvent are found to influence the outcome of the reactions. Using THF in the reaction affords a dinuclear species [Ln2(Omes)6(thf)4]?2THF (Ln=La 1 , Nd 2 ) for the lighter rare earth metals, while a mononuclear species [Ln(Omes)3(thf)3] (Ln=Sm 3 , Tb 5 , Er 6 , Yb 7 , Y 8 ) is obtained for the heavier rare earth elements. Surprisingly, there is no change in metal coordination number between the two structural motifs. A divalent trinuclear linear complex [Eu3(Omes)6(thf)6] 4 is obtained for Eu, and features solely bridging aryloxide ligands. Using DME as the reaction solvent affords [La(Omes)3(dme)2] 9 from the reaction mixture, and [Ln2(Omes)6(dme)2]?PhMe (La 10 , Nd 11 ) and [Y(Omes)3(dme)2] 14 following crystallization of the crude product from toluene. The dinuclear species [Eu2(Omes)4(dme)4] 12 contains two unidentate and two chelating DME ligands, and contrasts the linear structure of 4 . Treatment of HOmes and HgPh2 with Yb metal in DME affords the mixed valent YbII/III complex [Yb2(Omes)5(dme)2] 13 , which is stabilized by an intramolecular π‐Ph–Yb interaction, and is a rare example of a mixed valent rare earth aryloxide. Treatment of Er metal with HOmes at elevated temperature (solvent free) affords the homoleptic [Er4(Omes)12] 15 , which consists of a tetranuclear array of Er atoms arranged in a ‘herringbone’ fashion; the structure is stabilized by intramolecular π‐Ph–Er interactions. Reaction of La metal with HOmes under similar conditions yields toluene insoluble “La(Omes)3”, which affords 1 following extraction with THF.  相似文献   

20.
Novel mixed-ligand complexes with empirical formula Ln(4-bpy)2(CCl3COO)3·nH2O [where Ln(III)?=?Dy, Ho, Er, Tm, Yb, Lu; 4-bpy?=?4,4??-bipyridine] were prepared and characterized by chemical and elemental analysis, infrared spectroscopy, and conductivity measurements (in methanol, dimethylformamide, and dimethyl sulfoxide). X-ray powder diffraction patterns indicate that the complexes are small crystalline compounds. IR spectra of complexes show that all carboxylate groups and 4-bpy are engaged in coordination of lanthanide ions. The thermal behavior of complexes was studied by means of TG, DTG, DTA techniques in the solid state under nonisothermal conditions in air atmosphere. During heating, the complexes decompose via intermediate products to the oxide Ln2O3. The combined TG?CFTIR technique was employed to study the decomposition pathway of the Ho(III) and Tm(III) complexes in flowing argon atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号