首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The syntheses of selenenate/seleninate esters and related derivatives by aromatic nucleophilic substitution (SNAr) reactions of 2‐bromo‐3‐nitrobenzylalcohol ( 13 ) and 2‐bromo‐3‐nitrobenzaldehyde ( 17 ) with Na2Se2/nBuSeNa are described. The reaction of 13 with Na2Se2 at room temperature afforded 7‐nitro‐1,2‐benzisoselenole(3 H) ( 15 ) instead of the desired diaryl diselenide 14 . Oxidation of selenenate ester 15 with hydrogen peroxide afforded the corresponding selenium(IV) derivative, 7‐nitro‐1,2‐benzisoselenole(3 H) selenium oxide ( 18 ). 2‐(Butylselanyl)‐3‐nitrobenzaldehyde ( 19 ) was synthesized by treating compound 17 with in situ generated nBuSeNa. The bromination reaction of selenide 19 did not afford the expected arylselenenyl bromide 20 , instead, it resulted in the formation of the unexpected 7‐nitro‐1,2‐benzisoselenol(3 H)‐3‐ol ( 21 ) and 3,3′‐oxybis(7‐nitro‐1,2‐benzisoselenole(3 H)) ( 22 ), respectively. The facile formation of heterocycles 21 and 22 is rationalized in terms of the aromatic ring strain in selenenyl bromide 20 . The presence of intramolecular secondary Se⋅⋅⋅O interactions in esters 15 , 18 , 21 , 22 , and selenenic anhydride 29 has been confirmed by single‐crystal X‐ray diffraction studies as well as computational studies. The presence of an intramolecular Se⋅⋅⋅O interaction in esters 4b , 8 , 15 , 18 , 21 , and 22 has been further proved by natural bond orbital (NBO) and atoms in molecules (AIM) calculations. Glutathione peroxidase‐like (GPx) antioxidant activities of 15 , 18 , 21 , 22 , and related heterocycles such as 7‐nitro‐1,2‐benzisoselenol(2 H)‐3‐one selenium oxide ( 4b ), 7‐nitro‐1,2‐benzisoselenol(2 H)‐3‐one ( 8 ), and 29 have been determined by the coupled reductase assay.  相似文献   

2.
3.
Sulfenic acids play a prominent role in biology as key participants in cellular signaling relating to redox homeostasis, in the formation of protein‐disulfide linkages, and as the central players in the fascinating organosulfur chemistry of the Allium species (e.g., garlic). Despite their relevance, direct measurements of their reaction kinetics have proven difficult owing to their high reactivity. Herein, we describe the results of hydrocarbon autoxidations inhibited by the persistent 9‐triptycenesulfenic acid, which yields a second order rate constant of 3.0×106 M ?1 s?1 for its reaction with peroxyl radicals in PhCl at 30 °C. This rate constant drops 19‐fold in CH3CN, and is subject to a significant primary deuterium kinetic isotope effect, kH/kD=6.1, supporting a formal H‐atom transfer (HAT) mechanism. Analogous autoxidations inhibited by the Allium‐derived (S)‐benzyl phenylmethanethiosulfinate and a corresponding deuterium‐labeled derivative unequivocally demonstrate the role of sulfenic acids in the radical‐trapping antioxidant activity of thiosulfinates, through the rate‐determining Cope elimination of phenylmethanesulfenic acid (kH/kD≈4.5) and its subsequent formal HAT reaction with peroxyl radicals (kH/kD≈3.5). The rate constant that we derived from these experiments for the reaction of phenylmethanesulfenic acid with peroxyl radicals was 2.8×107 M ?1 s?1; a value 10‐fold larger than that we measured for the reaction of 9‐triptycenesulfenic acid with peroxyl radicals. We propose that whereas phenylmethanesulfenic acid can adopt the optimal syn geometry for a 5‐centre proton‐coupled electron‐transfer reaction with a peroxyl radical, the 9‐triptycenesulfenic is too sterically hindered, and undergoes the reaction instead through the less‐energetically favorable anti geometry, which is reminiscent of a conventional HAT.  相似文献   

4.
Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se???O chalcogen bonds that lead to conserved supramolecular recognition units. Se???O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se???O chalcogen bonds were explored using high‐resolution X‐ray charge density analysis and atons‐in‐molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se???O chalcogen bonding and soft‐metal‐like behavior of organoselenium. An analysis of the charge density around Se?N and Se?C covalent bonds in conjunction with the Se???O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se???O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS).  相似文献   

5.
6.
A series of novel hyperbranched polyselenides and polytellurides with multiple catalytic sites at the branching units has been synthesized via the polycondensation of A2 + B3 monomers. The GPx‐like activities of these polymer mimics were assessed and it was found that the polytellurides showed higher GPx‐like activities than the corresponding polyselenides. Interestingly, the polymers with higher molecular weights and degree of branching (DB) showed higher GPx‐like activities than the analogous lower molecular weight polymer. The enhancement in the catalytical activity of the hyperbranched polymers with increasing molecular weight affirmed the importance of the incorporation of multiple catalytic groups in the macromolecule which increases the local concentration of catalytic sites.  相似文献   

7.
Nanocarbon oxides have been proved to possess great peroxidase‐like activity, catalyzing the oxidation of many peroxidase substrates, such as 3,3′,5,5′‐tetramethylbenzidine (TMB) and o‐phenylenediamine dihydrochloride (OPD), accompanied by a significant color change. This chromogenic reaction is widely used to detect glucose and occult blood. The chromogenic reaction was intensively investigated with density functional theory and molecular‐level insights into the nature of peroxidase‐like activity were gained. A radical mechanism was unraveled and the carboxyl groups of nanocarbon oxides were identified as the reactive sites. Aromatic domains connected with the carboxyl groups were critical to the peroxidase‐like activity.  相似文献   

8.
9.
10.
The reactions of .OH radicals with deoxyribose, DR, form five different DR. radicals, only one of which is transformed into malondialdehyde (MDA)‐like products. The radiolytic yield of the MDA‐like products increases with the increase in the DR concentration indicating that some of the initially formed “unproductive” radicals react with DR to form the “productive” radicals. The yield of the MDA‐like products also increases with the dose rate delivered to the solution suggesting that the formation of the MDA‐like products involves the reaction of the “productive” radicals with a radical. The addition of ascorbate, AH?, to the solution decreases the yield of the MDA‐like products as expected from the relative rates of the reaction of DR and AH? with .OH radicals. On the other hand the addition of the exogenous thiol, N‐acetylcysteine (NAC), to the solutions decreases the yield of the MDA‐like products considerably more than expected from the rate constants of the reaction with .OH radicals. The addition of the endogenous thiol, glutathione (GSH), to the solutions affects the yield of the MDA‐like products at low concentration less than expected and at “high” concentrations more than expected from the rate constant of the reaction. Addition of low concentration of AH? to solutions containing GSH increases considerably its antioxidant activity whereas addition of small concentrations of AH? to solutions containing NAC has no effect on its antioxidant activity. The results point out that the DR. radicals react differently with NAC and GSH and that the GS. and NAC. radicals react differently with DR, the GS. radical being considerably more active than the NAC. radical. Thus it has to be concluded that the relative activity of antioxidants depends also on the rate constants of many secondary reactions and on the concentrations of all the solutes present in the system.  相似文献   

11.
Facile filling of multiwalled carbon nanotubes (MWCNTs) with Prussian blue nanoparticles (PBNPs) of high peroxidase‐like catalytic activity was performed to develop novel colorimetric sensing protocols for assaying H2O2 and glucose. Fine control of PBNP growth was achieved by modulating the concentration ratio of K3[Fe(CN)6] and FeSO4 precursors in an acidic solution containing ultrasonically dispersed MWCNTs, and thus size‐matched PBNPs could be robustly immobilized in the cavities of the MWCNTs (MWCNT‐PBin). Unlike other reported methods involving complicated procedures and rigorous preparation/separation conditions, this mild one‐pot filling method has advantages of easy isolation of final products by centrifugation, good retention of the pristine outer surface of the MWCNT shell, and satisfactory filling yield of (24±2) %. In particular, encapsulation of PBNPs of poor dispersibility and limited functionality in dispersible and multifunctional MWCNT shells creates new and valuable opportunities for quasihomogeneous‐phase applications of PB in liquid solutions. The MWCNT‐PBin nanocomposites were exploited as a peroxidase mimic for the colorimetric assay of H2O2 in solution by using 3,3′,5,5′‐tetramethylbenzidine (TMB) as reporter, and they gave a linear absorbance response from 1 μM to 1.5 mM with a limit of detection (LOD) of 100 nM . Moreover, glucose oxidase (GOx) was anchored on the outer surface of MWCNT‐PBin to form GOx/MWCNT‐PBin bionanocomposites. The cooperation of outer‐surface biocatalysis with peroxidase‐like catalysis of interior PB resulted in a novel cooperative colorimetric biosensing mode for glucose assay. The use of GOx/MWCNT‐PBin for colorimetric biosensing of glucose gave a linear absorbance response from 1 μM to 1.0 mM and an LOD of 200 nM . The presented protocols may be extended to other multifunctional nanocomposite systems for broad applications in catalysis and biotechnology.  相似文献   

12.
Hydroxyaryl alkyl tellurides are effective antioxidants both in organic solution and aqueous biphasic systems. They react by an unconventional mechanism with ROO. radicals with rate constants as high as 107 M ?1 s?1 at 303 K, outperforming common phenols. The reactions proceed by oxygen atom transfer to tellurium followed by hydrogen atom transfer to the resulting RO. radical from the phenolic OH. The reaction rates do not reflect the electronic properties of the ring substituents and, because the reactions occur in a solvent cage, quenching is more efficient when the OH and TeR groups have an ortho arrangement. In the presence of thiols, hydroxyaryl alkyl tellurides act as catalytic antioxidants towards both hydroperoxides (mimicking the glutathione peroxidases) and peroxyl radicals. The high efficiency of the quenching of the peroxyl radicals and hydroperoxides could be advantageous under normal cellular conditions, but pro‐oxidative (thiol depletion) when thiol concentrations are low.  相似文献   

13.
The origin of the peroxidase‐like activity of gold nanoparticles and the impact of surface modification are studied. Furthermore, some influencing factors, such as fabrication process, redox property of the modifier, and charge property of the substrate, are investigated. Compared to amino‐modified or citrate‐capped gold nanoparticles, unmodified gold nanoparticles show significantly higher catalytic activity toward peroxidase substrates, that is, the superficial gold atoms are a contributing factor to the observed peroxidase‐like activity. The different catalytic activities of amino‐modified and citrate‐capped gold nanoparticles toward 3,3′,5,5′‐tetramethylbenzidine (TMB) and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS) show that the charge characteristics of the nanoparticles and the substrate also play an important role in the catalytic reactions.  相似文献   

14.
The antioxidant activities of several hydroxy‐substituted 4‐thiaflavanes, compounds 1 – 3 , were determined by measuring their ability of inhibiting the autoxidation of styrene or cumene. On this basis, the role played by the number and position of OH groups and by the oxidation state of the S‐atom was quantified and rationalized. With these data, it should be possible to optimize the structural features of these ‘double‐faced’ antioxidants for structure? activity‐relationship studies. A comparison between the kinetic data (kinh) reported in this paper and the previously reported values of the antiradical activities (SC50), measured by the DPPH. bleaching method, for 1 – 3 is made (Table).  相似文献   

15.
16.
This work reports the novel application of carbon‐coated magnetite nanoparticles (mNPs@C) as catalytic nanomaterial included in a composite electrode material (mNPs@C/CPE) taking advantages of their intrinsic peroxidase‐like activity. The nanostructured electrochemical transducer reveals an enhancement of the charge transfer for redox processes involving hydrogen peroxide. Likewise, mNPs@C/CPE demonstrated to be highly selective even at elevated concentrations of ascorbic acid and uric acid, the usual interferents of blood glucose analysis. Upon these remarkable results, the composite matrix was further modified by the addition of glucose oxidase as biocatalyst, in order to obtain a biosensing strategy (GOx/mNPs@C/CPE) with enhanced properties for the electrochemical detection of glucose. GOx/mNPs@C/CPE exhibit a linear range up to 7.5×10?3 mol L?1 glucose, comprising the entirely physiological range and incipient pathological values. The average sensitivity obtained at ?0.100 V was (1.62±0.05)×105 nA L mol?1 (R2=0.9992), the detection limit was 2.0×10?6 M while the quantification limit was 6.1×10?6 mol L?1. The nanostructured biosensor demonstrated to have an excellent performance for glucose detection in human blood serum even for pathological values.  相似文献   

17.
18.
19.
20.
In this study, a series of secondary‐ and tertiary‐amino‐substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert‐amino groups in benzylamine‐based diselenides by sec‐amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N‐propyl‐ and N‐isopropylamino‐substituted diselenides are 8–18 times more active than the corresponding N,N‐dipropyl‐ and N,N‐diisopropylamine‐based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec‐amino‐substituted diselenides is similar to that of the tert‐amine‐based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx‐like activities. It is observed that the sec‐amino groups are better than the tert‐amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol‐exchange reactions in the selenenyl sulfides derived from sec‐amine‐based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec‐amine‐based compounds are more stable toward further reactions with peroxides than their tert‐amine‐based analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号