首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We present a fortuitous discovery of enhanced shape-selective recognition of anion guests that stems from a complexation-induced conformational change in porphyrin hosts upon anion binding. Porphyrin hosts reported here exist in a conformation that is not favorable to guest binding. Anions that bind strongly are those that can induce a conformational change in the host to allow guest binding. Furthermore, guests that mimic the shape of the newly formed pocket bind the strongest.  相似文献   

2.
Small alterations to the structure of a star‐shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring. Caterpillar track complexes can also be prepared by binding the hexapyridyl template inside the 8‐ and 10‐porphyrin nanorings. NMR exchange spectroscopy (EXSY) experiments show that these complexes exhibit correlated motion, in which the conrotatory rotation of the two template wheels is coupled to rotation of the nanoring track. In the case of the 10‐porphyrin system, the correlated motion can be locked by binding palladium(II) dichloride between the two templates.  相似文献   

3.
Dynamic assembly inclusion complexes of tweezer-type bis(zinc porphyrin) (1) with di(4-pyridyl)porphyrin derivatives have been designed and constructed. The complexes are induced by Zn-N coordination, and the weak binding allows the large-size di(4-pyridyl)porphyrin guests in random rotation. Dynamic characteristics of these assemblies, such as ligand exchange and dynamic fluorescence quenching, have been investigated by 1H NMR, UV-Vis and fluorescence spectra. The stability of such assembly has pronounced dependence on the size-matching effect and thermal effect.  相似文献   

4.
Herein we report a D3h‐symmetric tail‐to‐tail bis‐calix[6]arene 3 featuring two divergent cavities triply connected by ureido linkages. This calix[6]tube was synthesized by a domino Staudinger/aza‐Wittig reaction followed by a macrocyclization reaction. This process also afforded a C2h‐symmetric isomer that represents a rare example of a self‐threaded rotaxane based on calix[6]arene subunits. The binding properties of 3 have been evaluated by NMR studies. Thus, bis‐calix[6]arene 3 is able to bind simultaneously two neutral ureido guests through an induced‐fit process. The guests are located in the cavities and are recognized through multiple hydrogen‐bonding interactions with the ureido bridges. Host 3 can also simultaneously bind multiple ions and is especially efficient for the complexation of organic ion triplets. The anion is recognized through hydrogen‐bonding interactions at the ureido binding site and is thus located between the two ammonium ions accommodated in the cavities. The resulting [1+1+2] quaternary complexes represent rare examples of cascade complexes with organic cations. These complexes are unique: 1) They are stable even in a markedly protic solvent, 2) the recognition of the ion triplets proceeds in a cooperative way through an induced‐fit process and with a high selectivity, linear cations and doubly charged anions being particularly well recognized, 3) the ions are bound as contact ion triplets thanks to the closeness of the three binding sites, 4) the cationic guests can be exchanged and thus mixed [1+1+1+1] complexes can be obtained, 5) the ureido linkers wrapped around the anion adopt a helical shape and the resulting chirality is sensed by the cations. In other words, bis‐calix[6]arene 3 presents a selective inner tunnel in which multiple guests such as organic ion triplets can be aligned in a cooperative way through induced‐fit processes.  相似文献   

5.
Supramolecular complexes between two cavity-appended porphyrin hosts and three bifunctional guests are described. The host with a single cavity exclusively forms dimers with the bifunctional guests, while the double cavity host yields tetramers and higher order assemblies. The role of allosteric interactions in the binding and assembly process is highlighted.  相似文献   

6.
Pseudo‐octahedral MII6L4 capsules result from the subcomponent self‐assembly of 2‐formylphenanthroline, threefold‐symmetric triamines, and octahedral metal ions. Whereas neutral tetrahedral guests and most of the anions investigated were observed to bind within the central cavity, tetraphenylborate anions bound on the outside, with one phenyl ring pointing into the cavity. This binding configuration is promoted by the complementary arrangement of the phenyl rings of the intercalated guest between the phenanthroline units of the host. The peripherally bound, rapidly exchanging tetraphenylborate anions were found to template an otherwise inaccessible capsular structure in a manner usually associated with slow‐exchanging, centrally bound agents. Once formed, this cage was able to bind guests in its central cavity.  相似文献   

7.
Branched starch polysaccharides are capable of binding multiple hydrophobic guests, but their exploitation as multivalent hosts and in functional materials is limited by their structural complexity and diversity. Linear α(1–4)‐linked glucose oligosaccharides are known to bind hydrophobic guests inside left‐handed single helices in solution and the solid state. Here, we describe the development of an amphiphilic probe that binds to linear α(1–4)‐linked glucose oligosaccharides and undergoes a conformational switch upon complexation, which gives rise to dramatic changes in the 1H NMR spectrum of the probe. We use this probe to explore hydrophobic binding sites in the branched starch polysaccharides amylopectin and β‐limit dextrin. Diffusion‐ordered (DOSY), nuclear Overhauser effect (NOESY) and chemical shift perturbation (HSQC) NMR experiments are utilised to provide evidence that, in aqueous solution, branched polysaccharides bind hydrophobic guests in well‐defined helical binding sites, similar to those reported for complexation by linear oligosaccharides. By examining the binding affinity of the probe to systematically enzymatically degraded polysaccharides, we deduce that the binding sites for hydrophobic guests can be located on internal as well as external branches and that proximal α(1–6)‐linked branch points weaken but do not prevent complexation.  相似文献   

8.
Cucurbit[7]uril (CB[7]) is known to bind strongly to hydrophilic amino saccharide guests with exceptional α‐anomer selectivities under aqueous conditions. Single‐crystal X‐ray crystallography and computational methods were used to elucidate the reason behind this interesting phenomenon. The crystal structures of protonated galactosamine (GalN) and glucosamine (GluN) complexes confirm the inclusion of α anomers inside CB[7] and disclose the details of the host–guest binding. Whereas computed gas‐phase structures agree with these crystal structures, gas‐phase binding free energies show preferences for the β‐anomer complexes over their α counterparts, in striking contrast to the experimental results under aqueous conditions. However, when the solvation effect is considered, the binding structures drastically change and the preference for the α anomers is recovered. The α anomers also tend to bind more tightly and leave less space in the CB[7] cavity toward inclusion of only one water molecule, whereas loosely bound β anomers leave more space toward accommodating two water molecules, with markedly different hydrogen‐bonding natures. Surprisingly, entropy seems to contribute significantly to both anomeric discrimination and binding. This suggests that of all the driving factors for the strong complexation of the hydrophilic amino saccharide guests, water mediation plays a crucial role in the anomer discrimination.  相似文献   

9.
Local molecular environment effects on the rates of ligand exchange at an asymmetric di[dihydroxotin(IV)] bis-porphyrin 5 are examined. The host 5 possesses four non-equivalent tin(IV)-ligand binding sites that are distinguished by their position relative to a shallow cavity, by the steric environment at each binding site and by electronic-structure differences between the constituent porphyrin and quinoxalinoporphyrin macrocycles. These design features of the asymmetric host are confirmed by X-ray crystal structure analysis. Binding experiments with monodentate carboxylic acids and bidentate dicarboxylic acids show significant differences in the rate of ligand exchange at each of the four tin(IV) binding sites. For monodentate carboxylic acids, binding preferentially occurs at the exterior porphyrin site. Further addition of carboxylic acid results in sequential binding at the quinoxalinoporphyrin sites and lastly at the interior site on the porphyrin, with high regioselectivity. These selective binding outcomes are immediately apparent by NMR spectroscopy. A series of 2D NMR spectroscopy experiments allowed identification of the preferred binding sites at the host. This positively identifies that steric hindrance and electron-withdrawing functionality on the porphyrin macrocycle impede ligand exchange. However, these effects are overcome by dicarboxylic acid guests, which form ditopic hydrogen-bond interactions between the intracavity hydroxo ligands in the initial stage of ligand exchange, leading to regioselective binding between the tin(IV) sites within the cavity. It is envisaged that the factors identified herein that define regioselective ligand exchange at host 5 will find wider application in supramolecular systems incorporating tin(IV) porphyrins.  相似文献   

10.
Functional polymeric materials containing immobilized metal complexes with the potential to bind nitric oxide (NO) are described. The materials were synthesized using template copolymerization techniques and contain immobilized metalloporphyrin and metallosalen (N,N′‐bis(salicylidene)‐1,2‐ethylenediaminato(2‐)) sites where NO binding occurs. A potential drawback of current materials designed for NO‐delivery is the rebinding of NO to the material after release. To minimize this undesirable rebinding event, materials were prepared in which immobilized sites contain additional covalently‐linked functional groups that can bind to the metal centers after NO dissociation. A model system with a covalently attached CoIIsalen complex and pyridine groups confirmed that the immobilized sites bind NO in the presence of the additional ligands. Attempts to immobilize an iron porphyrin, containing two axial imidazole ligands, were unsuccessful because the lability of the iron center prevented the formation of a stable template. Instead, the desired material was achieved by selecting CoIII porphyrin with axially coordinated imidazole ligands as the template complex. Once immobilized, a procedure was developed to remove the cobalt ions and incorporate iron into the sites. The site structure of these new immobilized sites was examined spectroscopically. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2282–2292, 2006  相似文献   

11.
Metal–organic self‐assembly has proven to be of great use in constructing structures of increasing size and intricacy, but the largest assemblies lack the functions associated with the ability to bind guests. Here we demonstrate the self‐assembly of two simple organic molecules with CdII and PtII into a giant heterometallic supramolecular cube which is capable of binding a variety of mono‐ and dianionic guests within an enclosed cavity greater than 4200 Å3. Its structure was established by X‐ray crystallography and cryogenic transmission electron microscopy. This cube is the largest discrete abiological assembly that has been observed to bind guests in solution; cavity enclosure and coulombic effects appear to be crucial drivers of host–guest chemistry at this scale. The degree of cavity occupancy, however, appears less important: the largest guest studied, bound the most weakly, occupying only 11 % of the host cavity.  相似文献   

12.
Versatile concave receptors with binding properties that can be controlled by external stimuli are rare. Herein, we report on a calix[6]crypturea ( 1 ) that features two different binding sites in close proximity, that is, a tris(2‐aminoethyl)amine (tren)‐based tris‐ureido cap that provides convergent hydrogen‐bond‐donor sites and a hydrophobic cavity suitable for the inclusion of organic guests. The binding properties of this heteroditopic receptor have been evaluated by NMR spectroscopic studies. Compound 1 behaves as a remarkably versatile host that strongly binds neutral molecules, anions, or contact ion pairs. Within each family of guests, compound 1 is able to discriminate between different guests with a high degree of selectivity. Indeed, neutral molecules that possess hydrogen‐bond donor and acceptor groups, chloride anions, and linear ammonium ions associated to F? or Cl? are particularly well recognized. In comparison with all the related receptors, compound 1 displays several unique features: 1) charged or neutral species are also recognized in polar or protic solvents, 2) thanks to the flexibility of the calixarene structure, induced‐fit processes allow the binding of large, biologically relevant ammonium salts such as neurotransmitters, and 3) the protonation of the basic cap leads to a positively charged receptor, 1? H+, which is reluctant to host anions and in which host properties are now governed by strong charge–dipole interactions with the guests. In other words, compound 1 presents an acid–base controllable tris‐ureido recognition site protected by a hydrophobic corridor that can select guests through induced‐fit processes. Thus, its versatile host properties can be allosterically controlled by protonation and selective guest‐switching processes are possible. To illustrate all these remarkable features, a sophisticated three‐pole supramolecular switch, based on the interconversion of host–guest systems displaying either charged or neutral guests, is described.  相似文献   

13.
Herein, a detailed investigation of the adsorption and dynamics of C60 and C70 fullerenes hosted in a self-assembled, two-dimensional, nanoporous porphyrin network on a solid Ag surface is presented. Time-resolved scanning tunneling microscopy (STM) studies of these supramolecular systems at the molecular scale reveal distinct host-guest interactions giving rise to a pronounced dissimilar mobility of the two fullerenes within the porphyrin network. Furthermore, long-range coverage-dependent interactions between the all-carbon guests, which clearly affect their mobility and are likely mediated by a complex mechanism involving the Ag substrate and the flexible porphyrin host network, are observed. At increased fullerene coverage, this unprecedented interplay results in the formation of large fullerene chains and islands. By applying a lattice gas model with nearest-neighbor interactions and by evaluating the fullerene-pair distribution functions, the respective coverage-dependent guest-guest interaction energies are estimated.  相似文献   

14.
Quadruply-hydrogen-bonded porphyrin homodimer Zn1.Zn1 has been designed, assembled, and evaluated as a supramolecular cleft-featured receptor for its ability to bind dipyridyl guests in chloroform-d. Monomer Zn1 consists of a 2-ureidopyrimidin-4(1H)-one unit, which was initially reported by Meijer et al., and a zinc porphyrin unit. The zinc porphyrin is strapped with an additional aliphatic chain for controlling the atropisomerization of porphyrin. The 2-ureidopyrimidin-4(1H)-one unit dimerizes exclusively in chloroform even at the dilute concentration of 10(-)(4) M, while the two "strapped" zinc porphyrin units of the homodimer provide additional binding sites for selective guest recognition. (1)H NMR studies indicate that the new homodimer Zn1.Zn1 adopts an S-type conformation due to strong donor-acceptor interaction between the electron-rich porphyrin units and the electron-deficient 2-ureidopyrimidin-4(1H)-one unit. (1)H NMR, UV-vis, and vapor pressure osmometry investigations reveal that Zn1.Zn1 could function as a new generation of assembled supramolecular cleft, to be able to not only efficiently bind linear dipyridyl molecules 14-17, resulting in the formation of stable termolecular complexes, with K(aasoc) values ranging from 3.8 x 10(6) to 8.9 x 10(7) M(-)(1), but also strongly complex a hydrogen-bond-assembled [2]rotaxane, 18, which consists of a rigid fumaramide thread and a pyridine-incorporated tetraamide cyclophane, with K(aasoc) = 1.2 x 10(4) M(-)(1). (1)H NMR competition experiments reveal that complexation to the dipyriyl guests also promotes the stability of the quadruply-hydrogen-bonded dimeric receptor.  相似文献   

15.
Complexation mechanism, binding properties and thermodynamic parameters of supramolecular chirality induction in the achiral host molecule, syn (face-to-face conformation) ethane-bridged bis(zinc porphyrin), upon interaction with chiral monoamine and monoalcohol guests have been studied by means of the UV-vis, CD, (1)H NMR, and ESI MS techniques. It was found that the chirogenesis process includes three major equilibria steps: the first guest ligation to a zinc porphyrin subunit of the host (K(1)), syn to anti conformational switching (K(S)), and further ligation by a second guest molecule to the remaining ligand-free zinc porphyrin subunit (K(2)), thus forming the final bis-ligated species possessing supramolecular chirality. The validity of this equilibria model is confirmed by the excellent match between the calculated and experimentally observed spectral parameters of the bis-ligated species. The second ligation proceeds in a cooperative manner as K(2) > K(1) for all supramolecular systems studied, regardless of the structure of the chiral ligand used. The binding properties are highly dependent on the nature of the functional group (amines are stronger binders than alcohols) and on the structure of the chiral guests (primary and aliphatic amines have overall binding constant values greater than those of secondary and aromatic amines, respectively).  相似文献   

16.
N‐Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand‐like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation–anion circular hydrogen‐bonded seam of the hosts, as well as through CH ??? π interactions. The N‐alkyl ammonium resorcinarene chlorides cooperatively bind a series of di‐acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first binding constants were similar (K1: 102 M ?1) for each host. The second binding constant was found to depend on the upper rim substituent of the host and the spacer length of the guests, with the optimum binding observed with the six‐carbon spacer (K2: 103 M ?2). Short spacer lengths increase steric hindrance, whereas longer spacer lengths increase flexibility thus reducing cooperativity. The host with the rigid cyclohexyl upper rim showed stronger binding than the host with flexible benzyl arms. The cooperative binding of these divalent guests was studied in solution through 1H NMR titration studies and supplemented by diffusion‐ordered spectroscopy (DOSY), X‐ray crystallography, and mass spectrometry.  相似文献   

17.
Vernier templating exploits a mismatch between the number of binding sites in a template and a reactant to direct the formation of a product that is large enough to bind several template units. Here, we present a detailed study of the Vernier‐templated synthesis of a 12‐porphyrin nanoring. NMR and small‐angle X‐ray scattering (SAXS) analyses show that Vernier complexes are formed as intermediates in the cyclo‐oligomerization reaction. UV/Vis/NIR titrations show that the three‐component assembly of the 12‐porphyrin nanoring figure‐of‐eight template complex displays high allosteric cooperativity and chelate cooperativity. This nanoring–template 1:2 complex is among the largest synthetic molecules to have been characterized by single‐crystal analysis. It crystallizes as a racemate, with an angle of 27° between the planes of the two template units. The crystal structure reveals many unexpected intramolecular C?H???N contacts involving the tert‐butyl side chains. Scanning tunneling microscopy (STM) experiments show that molecules of the 12‐porphyrin template complex can remain intact on the gold surface, although the majority of the material unfolds into the free nanoring during electrospray deposition.  相似文献   

18.
A bis(Zn(II)-porphyrin) tweezer host with anthracene components as apex and side-arms has been synthesized. Mono- (pyridine) and bidentate (4,4'-bipyridine) guests were used as models for single and double axial coordination inside the cavity, respectively. A series of dipyridylporphyrin guests with different substitution patterns and excited-state energy levels have association constants with the tweezers that are of the order of 10(6) M(-1), which is indicative of complexation with the inside of the cavity. This complexation can only occur upon an important distortion of the cavity that opens the bite by about 30 %. This characteristic, in conjunction with their ability to reduce the bite distance by rotation around single bonds, makes these porphyrin tweezers amongst the most versatile so far reported, with tuning of the bite distance in the range of approximately 5-20 Angstroms. Energy transfer to the free-base guest within the triporphyrin complex is nearly quantitative (95-98 %) and the rates of transfer are consistent with a F?rster mechanism that is characterized by a reduced orientation factor.  相似文献   

19.
Poly(acrylic acid) (PAA) is modified by 5‐(4‐β‐alanylaminophenyl)‐10,15,20‐tris(4‐sulfonatophenyl) porphinatoiron(III) to yield iron porphyrin‐bearing PAAs (FeP(n)s) through a condensation reaction. FeP(n)s were further functionalized by Py3CD, which is a per‐O‐methylated β‐cyclodextrin (CD) dimer with a pyridine linker and includes the porphyrin pendants to form ferric hemoCD‐P(n)s. Ferrous hemoCD‐P(3), having three porphyrin chromophores in a polymer chain, is shown to bind molecular oxygen (P1/2=7.9±1.4 Torr) in aqueous solution at pH 7.0 and 25 °C, affording oxy‐hemoCD‐P(3). Oxy‐hemoCD‐P(3) is biphasically autoxidized to ferric hemoCD‐P(3), with 27 % of the dioxygen adducts being rapidly oxidized. The rate of autoxidation of oxy‐hemoCD‐P(15), having 15 porphyrin chromophores in a polymer chain, was much faster than that of oxy‐hemoCD‐P(3), thus suggesting self‐catalyzed autoxidation of oxy‐hemoCD‐P(n)s. Oxy‐hemoCD‐P(n)s are markedly stabilized by catalase, thereby indicating that hydrogen peroxide generated from oxy‐hemoCD‐P(n) accelerates the autoxidation. Most of the hemoCD‐P(3) molecules injected into the femoral vein of a rat remained in the body, though about 16 % of the hemoCD‐P(3) molecules were excreted in the urine as a carbon monoxide adduct.  相似文献   

20.
Photoconductivity is a characteristic property of semi‐conductors. Herein, we present a photo‐conducting crystalline metal–organic framework (MOF) thin film with an on–off photocurrent ratio of two orders of magnitude. These oriented, surface‐mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C60 guests, loaded in the pores using a layer‐by‐layer process. By comparison with results obtained for reference MOF structures and based on DFT calculations, we conclude that donor–acceptor interactions between the porphyrin of the host MOF and the C60 guests give rise to a rapid charge separation. Subsequently, holes and electrons are transported through separate channels formed by porphyrin and by C60, respectively. The ability to tune the properties and energy levels of the porphyrin and fullerene, along with the controlled organization of donor–acceptor pairs in this regular framework offers potential to increase the photoconduction on–off ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号