首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach for hyperpolarized 129Xe molecular sensors is explored using paramagnetic relaxation agents that can be deactivated upon chemical or enzymatic reaction with an analyte. Cryptophane encapsulated 129Xe within the vicinity of the paramagnetic center experiences fast relaxation that, through chemical exchange of xenon atoms between cage and solvent pool, causes accelerated hyperpolarized 129Xe signal decay in the dissolved phase. In this proof‐of‐concept work, the relaxivity of Gadolinium III‐DOTA on 129Xe in the solvent was increased eightfold through tethering of the paramagnetic molecule to a cryptophane cage. This potent relaxation agent can be ′turned off′ specifically for 129Xe through chemical reactions that spatially separate the GdIII centre from the attached cryptophane cage. Unlike 129Xe chemical shift based sensors, the new concept does not require high spectral resolution and may lead to a new generation of responsive contrast agents for molecular MRI.  相似文献   

2.
Diamagnetic chemical exchange saturation transfer (CEST) contrast agents offer an alternative to Gd3+‐based contrast agents for MRI. They are characterized by containing protons that can rapidly exchange with water and it is advantageous to have these protons resonate in a spectral window that is far removed from water. Herein, we report the first results of DFT calculations of the 1H nuclear magnetic shieldings in 41 CEST agents, finding that the experimental shifts can be well predicted (R2=0.882). We tested a subset of compounds with the best MRI properties for toxicity and for activity as uncouplers, then obtained mice kidney CEST MRI images for three of the most promising leads finding 16 (2,4‐dihydroxybenzoic acid) to be one of the most promising CEST MRI contrast agents to date. Overall, the results are of interest since they show that 1H NMR shifts for CEST agents—charged species—can be well predicted, and that several leads have low toxicity and yield good in vivo MR images.  相似文献   

3.
Responsive or smart magnetic resonance imaging (MRI) contrast agents are molecular sensors that alter the MRI signal upon changes in a particular parameter in their microenvironment. Consequently, they could be exploited for visualization of various biochemical events that take place at molecular and cellular levels. In this study, a set of dual‐frequency calcium‐responsive MRI agents are reported. These are paramagnetic, fluorine‐containing complexes that produce remarkably high MRI signal changes at the 1H and 19F frequencies at varying Ca2+ concentrations. The nature of the processes triggered by Ca2+ was revealed, allowing a better understanding of these complex systems and their further improvement. The findings indicate that these double‐frequency tracers hold great promise for development of novel functional MRI methods.  相似文献   

4.
Specific turn‐on detection of enzyme activities is of fundamental importance in drug discovery research, as well as medical diagnostics. Although magnetic resonance imaging (MRI) is one of the most powerful techniques for noninvasive visualization of enzyme activity, both in vivo and ex vivo, promising strategies for imaging specific enzymes with high contrast have been very limited to date. We report herein a novel signal‐amplifiable self‐assembling 19F NMR/MRI probe for turn‐on detection and imaging of specific enzymatic activity. In NMR spectroscopy, these designed probes are “silent” when aggregated, but exhibit a disassembly driven turn‐on signal change upon cleavage of the substrate part by the catalytic enzyme. Using these 19F probes, nanomolar levels of two different target enzymes, nitroreductase (NTR) and matrix metalloproteinase (MMP), could be detected and visualized by 19F NMR spectroscopy and MRI. Furthermore, we have succeeded in imaging the activity of endogenously secreted MMP in cultured media of tumor cells by 19F MRI, depending on the cell lines and the cellular conditions. These results clearly demonstrate that our turn‐on 19F probes may serve as a screening platform for the activity of MMPs.  相似文献   

5.
The development of sensitive and chemically selective MRI contrast agents is imperative for the early detection and diagnosis of many diseases. Conventional responsive contrast agents used in 1H MRI are impaired by the high abundance of protons in the body. 129Xe hyperCEST NMR/MRI comprises a highly sensitive complement to traditional 1H MRI because of its ability to report specific chemical environments. To date, the scope of responsive 129Xe NMR contrast agents lacks breadth in the specific detection of small molecules, which are often important markers of disease. Herein, we report the synthesis and characterization of a rotaxane‐based 129Xe hyperCEST NMR contrast agent that can be turned on in response to H2O2, which is upregulated in several disease states. Added H2O2 was detected by 129Xe hyperCEST NMR spectroscopy in the low micromolar range, as well as H2O2 produced by HEK 293T cells activated with tumor necrosis factor.  相似文献   

6.
A family of fluorinated gemini surfactants derived from perfluoropinacol has been synthesized as novel 19F magnetic resonance imaging (19F MRI) agents. These fluorinated surfactants with 12 symmetric fluorine atoms and one singlet 19F MR peak can be conveniently prepared from perfluoropinacol and oligo(ethylene glycols) on multi-gram scales. Solubility, hydrophilicity (log P), and critical micelle concentration (CMC) measurements of these fluorinated surfactants indicated that high aqueous solubility can be achieved by introducing oligo(ethylene glycols) with appropriate length into perfluoropinacol, i.e., manipulating the fluorine content (F%). One of these fluorinated surfactants with high aqueous solubility and excellent 19F MR properties has been identified by 19F MRI phantom experiments as a promising 19F MRI agent.  相似文献   

7.
A cyclotriphosphazene substituted with six 3,5-bis(trifluoromethyl) benzyloxy units was designed as a novel 19F MRI contrast agent. The resulting molecule has 36 magnetically equivalent fluorine atoms and exhibited suitable MRI properties with high imaging sensitivity, confirming the proof-of-concept as a convenient scaffold for the production of new 19F MRI contrasts agents.  相似文献   

8.
Effective diagnosis of disease and its progression can be aided by 19F magnetic resonance imaging (MRI) techniques. Specifically, the inherent sensitivity of the spin–lattice relaxation time (T1) of 19F nuclei to oxygen partial pressure makes 19F MRI an attractive non-invasive approach to quantify tissue oxygenation in a spatiotemporal manner. However, there are only few materials with the adequate sensitivity to be used as oxygen-sensitive 19F MRI agents at clinically relevant field strengths. Motivated by the limitations in current technologies, we report highly fluorinated monomers that provide a platform approach to realize water-soluble, partially fluorinated copolymers as 19F MRI agents with the required sensitivity to quantify solution oxygenation at clinically relevant magnetic field strengths. The synthesis of a systematic library of partially fluorinated copolymers enabled a comprehensive evaluation of copolymer structure–property relationships relevant to 19F MRI. The highest-performing material composition demonstrated a signal-to-noise ratio that corresponded to an apparent 19F density of 220 mm , which surpasses the threshold of 126 mm 19F required for visualization on a three Tesla clinical MRI. Furthermore, the T1 of these high performing materials demonstrated a linear relationship with solution oxygenation, with oxygen sensitivity reaching 240×10−5 mmHg−1s−1. The relationships between material composition and 19F MRI performance identified herein suggest general structure–property criteria for the further improvement of modular, water-soluble 19F MRI agents for quantifying oxygenation in environments relevant to medical imaging.  相似文献   

9.
Magnetic resonance imaging(MRI) has been extensively used in clinical diagnosis and currently over 30% MRI runs are performed in the presence of contrast agents. However, commercially available contrast agents originated from small molecules typically exhibit relatively low relaxivities and insufficient circulation time. Therefore, there is a long pursuit to develop new contrast agents with high relaxivities to discriminate pathological tissues from normal ones. Compared with small molecule MRI contrast agents, the incorporation of small molecule contrast agents into macromolecular scaffolds allows for constructing macromolecular MRI contrast agents, remarkably elevating the relaxivities due in part to increased rotational correlation time(τR). Moreover, if the macromolecular scaffolds are responsive to external stimuli, the MRI signals could be selectively switched on at the desired sites(e.g., pathological tissues), further intensifying the imaging contrast. In this feature article, we outline the recent achievements in the fabrication of stimuli-responsive macromolecular MRI contrast agents. Specifically, macromolecular contrast agents being responsive to acidic p H, redox potentials, and other stimuli including photoirradiation, pathogens, and salt concentration are discussed. These smart contrast agents could affect either longitudinal(T1) or transverse(T2) relaxation times of water protons or other nuclei(e.g.,19 F), exhibiting enhanced signals in pathological tissues yet suppressed signals in normal ones and displaying promising potentials in in vitro and in vivo MRI applications.  相似文献   

10.
Magnetic resonance imaging (MRI) is one of the most powerful imaging tools today, capable of displaying superior soft-tissue contrast. This review discusses developments in the field of 19F MRI multimodal probes in combination with optical fluorescence imaging (OFI), 1H MRI, chemical exchange saturation transfer (CEST) MRI, ultrasonography (USG), X-ray computed tomography (CT), single photon emission tomography (SPECT), positron emission tomography (PET), and photoacoustic imaging (PAI). In each case, multimodal 19F MRI probes compensate for the deficiency of individual techniques and offer improved sensitivity or accuracy of detection over unimodal counterparts. Strategies for designing 19F MRI multimodal probes are described with respect to their structure, physicochemical properties, biocompatibility, and the quality of images.  相似文献   

11.
Mobile proton‐containing solutes can be detected by MRI by the chemical exchange saturation transfer (CEST) method. CEST sensitivity is dramatically enhanced by using, as exchanging protons, the water molecules confined inside liposomes, shifted by a paramagnetic shift reagent. The chemical shift of the intraliposomal water resonance (δIL) is affected by the overall shape of the supramolecular system. δIL of a spherical LipoCEST acts as a sensitive reporter of the distribution of streptavidin proteins anchored at the liposome surface by biotinylated phospholipids. This finding prompted the design of a MMP‐2 responsive LipoCEST agent as the streptavidin moieties can be released from the liposome surfaces when a properly tailored enzyme‐cleavable peptide is inserted on the phospholipids before the terminal biotin residues. δIL reports on the overall changes in the supramolecular architecture associated to the cleavage carried out by MMP‐2.  相似文献   

12.
19F magnetic resonance imaging (MRI) is a powerful molecular imaging technique that enables high-resolution imaging of deep tissues without background signal interference. However, the use of nanoparticles (NPs) as 19F MRI probes has been limited by the immediate trapping and accumulation of stiff NPs, typically of around 100 nm in size, in the mononuclear phagocyte system, particularly in the liver. To address this issue, elastic nanomaterials have emerged as promising candidates for improving delivery efficacy in vivo. Nevertheless, the impact of elasticity on NP elimination has remained unclear due to the lack of suitable probes for real-time and long-term monitoring. In this study, we present the development of perfluorocarbon-encapsulated polymer NPs as a novel 19F MRI contrast agent, with the aim of suppressing long-term accumulation. The polymer NPs have high elasticity and exhibit robust sensitivity in 19F MRI imaging. Importantly, our 19F MRI data demonstrate a gradual decline in the signal intensity of the polymer NPs after administration, which contrasts starkly with the behavior observed for stiff silica NPs. This innovative polymer-coated NP system represents a groundbreaking nanomaterial that successfully overcomes the challenges associated with long-term accumulation, while enabling tracking of biodistribution over extended periods.  相似文献   

13.
19F magnetic resonance imaging (MRI) probes that can detect biological phenomena such as cell dynamics, ion concentrations, and enzymatic activity have attracted significant attention. Although perfluorocarbon (PFC) encapsulated nanoparticles are of interest in molecular imaging owing to their high sensitivity, activatable PFC nanoparticles have not been developed. In this study, we showed for the first time that the paramagnetic relaxation enhancement (PRE) effect can efficiently decrease the 19F NMR/MRI signals of PFCs in silica nanoparticles. On the basis of the PRE effect, we developed a reduction‐responsive PFC‐encapsulated nanoparticle probe, FLAME‐SS‐Gd3+ (FSG). This is the first example of an activatable PFC‐encapsulated nanoparticle that can be used for in vivo imaging. Calculations revealed that the ratio of fluorine atoms to Gd3+ complexes per nanoparticle was more than approximately 5.0×102, resulting in the high signal augmentation.  相似文献   

14.
磁共振成像(MRI)是一种强大的非侵入式生物医学诊断技术. 临床上, MRI需要借助造影剂来提高成像质量, 从而提高诊断的准确性. 由于具有优越的信号放大能力和生物相容性, 自组装多肽探针可负载特定的MRI分子, 通过酶促自组装过程实现肿瘤靶向和特异性富集, 增强肿瘤病灶区MRI信号, 从而进一步提高MRI的准确性和灵敏度. 本综述总结了近年来多肽自组装探针在不同MRI模式( 1H MRI, 19F MRI和双自旋核MRI)下的最新进展, 并展望了这类新型探针在MRI领域的应用前景.  相似文献   

15.
Getting FIT : A bispherical 19F imaging tracer, 19FIT, was designed and synthesized. 19FIT is advantageous over perfluorocarbon‐based 19F imaging agents, as it is not retained in the organs and does not require complex formulation procedures. Imaging agents such as 19FIT can lead to 19F magnetic resonance imaging (MRI) playing an important role in drug therapy, analogous to the role played by 1H MRI in disease diagnosis.

  相似文献   


16.
A series of low molecular weight lanthanide complexes were developed that have high 1H longitudinal relaxivities (r1) and the potential to be used as dual frequency 1H and 19F MR probes. Their behavior was investigated in more detail through relaxometry, pH‐potentiometry, luminescence, and multinuclear NMR spectroscopy. Fitting of the 1H NMRD and 17O NMR profiles demonstrated a very short water residence lifetime (<10 ns) and an appreciable second sphere effect. At lower field strengths (20 MHz), two of the complexes displayed a peak in r1 (21.7 and 16.3 mM ?1 s?1) caused by an agglomeration, that can be disrupted through the addition of phosphate anions. NMR spectroscopy revealed that at least two species are present in solution interconverting through an intramolecular binding process. Two complexes provided a suitable signal in 19F NMR spectroscopy and through the selection of optimized imaging parameters, phantom images were obtained in a MRI scanner at concentrations as low as 1 mM . The developed probes could be visualized through both 1H and 19F MRI, showing their capability to function as dual frequency MRI contrast agents.  相似文献   

17.
19F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19F NMR signal. 19F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking.  相似文献   

18.
In the past few decades, magnetic resonance spectroscopy (MRS) and MR imaging (MRI) have developed into a powerful non-invasive tool for medical diagnostic and therapy. Especially 19F MR shows promising potential because of the properties of the fluorine atom and the negligible background signals in the MR spectra. The detection of temperature in a living organism is quite difficult, and usually external thermometers or fibers are used. Temperature determination via MRS needs temperature-sensitive contrast agents. This article reports first results of solvent and structural influences on the temperature sensitivity of 19F NMR signals of chosen molecules. By using this chemical shift sensitivity, a local temperature can be determined with a high precision. Based on this preliminary study, we synthesized five metal complexes and compared the results of all variable temperature measurements. It is shown that the highest 19F MR signal temperature dependence is detectable for a fluorine nucleus in a Tm3+-complex.  相似文献   

19.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

20.
Magnetic resonance angiography is an attractive method for the visualization of the cerebrovasculature, but small‐sized vessels are hard to visualize with the current clinically approved agents. In this study, a polymeric contrast agent for the superfine imaging of the cerebrovasculature is presented. Eight‐arm polyethylene glycol with a molecular weight of ≈17 000 Da conjugated with a Gd chelate and fluorescein (F‐8‐arm PEG‐Gd) is used. The relaxivity rate is 9.3 × 10−3m −1 s−1, which is threefold higher than that of free Gd chelate. Light scattering analysis reveals that F‐8‐arm PEG‐Gd is formed by self‐assembly. When the F‐8‐arm PEG‐Gd is intravenously injected, cerebrovasculature as small as 100 µm in diameter is clearly visualized. However, signals are not enhanced when Gd chelate and Gd chelate‐conjugated 8‐arm PEG are injected. Furthermore, small vasculature around infarct region in rat stroke model can be visualized. These results suggest that F‐8‐arm PEG‐Gd enhances the MR imaging of cerebrovasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号