首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
N‐[(Uracil‐5‐yl)methyl]urea is reported as a minimalistic low‐molecular‐weight hydrogelator (LMWHG). The unusual phosphate‐induced assembly of this compound has been thoroughly investigated by IR, UV/Vis, and NMR spectroscopy, electron microscopy, and rheological experiments. This rare example of an anion‐triggered urea‐based LMWHG is the first example of a pyrimidine‐ and urea‐containing molecule that can be forced into self‐assembly in aqueous solution without additional aromatic or lipophilic groups. The gelator/phosphate ratio within the hydrogel was successfully determined by 31P MAS NMR spectroscopy. The hydrogel exhibits a very fast and repeatable self‐healing property, and remarkable G′ values. The viscoelastic properties of the hydrogel can easily be tuned by variation of the phosphate ratio.  相似文献   

2.
A series of pyridyl amides derived from isonicotinic acid, nicotinic acid, and benzoic acid have been synthesized. Only N-(4-pyridyl)isonicotinamide 1 is found to be an efficient hydrogelator with a minimum gelator concentration of 0.37 wt %. A wide range of concentrations (0.37-20 wt %) could be used to form hydrogels. The other amides, namely, N-(3-pyridyl)isonicotinamide 2, N-(2-pyridyl)isonicotinamide 3, N-(phenyl)isonicotinamide 4, N-(4-pyridyl)nicotinamide 5, N-(3-pyridyl)nicotinamide 6, and N-(4-pyridyl)benzamide 7, did not show any gelation properties. Fourier transform infrared spectroscopy, variable temperature 1H NMR, single-crystal diffraction and X-ray powder diffraction (XRPD), and scanning electron microscopy have been used to characterize the gel. Single-crystal diffraction and XRPD studies indicate that the morph responsible for gel formation is different from that in its bulk solid and xerogel.  相似文献   

3.
A pyrene‐containing phenylboronic acid (PBA) functionalized low‐molecular‐weight hydrogelator was synthesized with the aim to develop glucose‐sensitive insulin release. The gelator showed the solvent imbibing ability in aqueous buffer solutions of pH values, ranging from 8–12, whereas the sodium salt of the gelator formed a hydrogel at physiological pH 7.4 with a minimum gelation concentration (MGC) of 5 mg mL?1. The aggregation behavior of this thermoreversible hydrogel was studied by using microscopic and spectroscopic techniques, including transmission electron microscopy, FTIR, UV/Vis, luminescence, and CD spectroscopy. These investigations revealed that hydrogen bonding, π–π stacking, and van der Waals interactions are the key factors for the self‐assembled gelation. The diol‐sensitive PBA part and the pyrene unit in the gelator were judiciously used in fluorimetric sensing of minute amounts of glucose at physiological pH. The morphological change of the gel due to addition of glucose was investigated by scanning electron microscopy, which denoted the glucose‐responsive swelling of the hydrogel. A rheological study indicated the loss of the rigidity of the native gel in the presence of glucose. Hence, the glucose‐induced swelling of the hydrogel was exploited in the controlled release of insulin from the hydrogel. The insulin‐loaded hydrogel showed thixotropic self‐recovery property, which hoisted it as an injectable soft composite. Encouragingly, the gelator was found to be compatible with HeLa cells.  相似文献   

4.
This paper highlights the key role played by solubility in influencing gelation and demonstrates that many facets of the gelation process depend on this vital parameter. In particular, we relate thermal stability ( T gel) and minimum gelation concentration (MGC) values of small-molecule gelation in terms of the solubility and cooperative self-assembly of gelator building blocks. By employing a van't Hoff analysis of solubility data, determined from simple NMR measurements, we are able to generate T calc values that reflect the calculated temperature for complete solubilization of the networked gelator. The concentration dependence of T calc allows the previously difficult to rationalize "plateau-region" thermal stability values to be elucidated in terms of gelator molecular design. This is demonstrated for a family of four gelators with lysine units attached to each end of an aliphatic diamine, with different peripheral groups (Z or Boc) in different locations on the periphery of the molecule. By tuning the peripheral protecting groups of the gelators, the solubility of the system is modified, which in turn controls the saturation point of the system and hence controls the concentration at which network formation takes place. We report that the critical concentration ( C crit) of gelator incorporated into the solid-phase sample-spanning network within the gel is invariant of gelator structural design. However, because some systems have higher solubilities, they are less effective gelators and require the application of higher total concentrations to achieve gelation, hence shedding light on the role of the MGC parameter in gelation. Furthermore, gelator structural design also modulates the level of cooperative self-assembly through solubility effects, as determined by applying a cooperative binding model to NMR data. Finally, the effect of gelator chemical design on the spatial organization of the networked gelator was probed by small-angle neutron and X-ray scattering (SANS/SAXS) on the native gel, and a tentative self-assembly model was proposed.  相似文献   

5.
Insight is provided into the aggregation thermodynamics associated to hydrogel formation by molecular gelators derived from L ‐valine and L ‐isoleucine. Solubility data from NMR measurements are used to extract thermodynamic parameters for the aggregation in water. It is concluded that at room temperature and up to 55 °C, these systems form self‐assembled fibrillar networks in water with quite low or zero enthalpic component, whereas the entropy of the aggregation is favorable. These results are explained by considering that the hydrophobic effect is dominant in the self‐assembly. However, studies by NMR and IR spectroscopy reveal that intermolecular hydrogen bonding is also a key issue in the aggregation process of these molecules in water. The low enthalpy values measured for the self‐assembly process are ascribed to the result of a compensation of the favorable intermolecular hydrogen‐bond formation and the unfavorable enthalpy component of the hydrophobic effect. Additionally, it is shown that by using the hydrophobic character as a design parameter, enthalpy‐controlled hydrogel formation, as opposed to entropy‐controlled hydrogel formation, can be achieved in water if the gelator is polar enough. It is noteworthy that these two types of hydrogels, enthalpy‐versus entropy‐driven hydrogels, present quite different response to temperature changes in properties such as the minimum gelator concentration (mgc) or the rheological moduli. Finally, the presence of a polymorphic transition in a hydrogel upon heating above 70 °C is reported and ascribed to the weakening of the hydrophobic effect upon heating. The new soft polymorphic materials present dramatically different solubility and rheological properties. Altogether these results are aimed to contribute to the rational design of molecular hydrogelators, which could be used for the tailored preparation of this type of soft materials. The reported results could also provide ground for the rationale of different self‐assembly processes in aqueous media.  相似文献   

6.
The 1H NMR study of supramolecular gels formed by two organogelators derived from valine is described. The analysis of the variation of chemical shift values and relaxation times in the gel samples reveals that in these systems only discrete species are observed by 1H NMR. The reduced T2 values and negative NOEs that are measured upon gel formation can be ascribed to an exchange between discrete organogelator species and the gel network. This process is found to be fast in the time scale of 1H NMR relaxation and slow in the NMR observation frequency time scale. It is shown here that other molecules, aside from the gelator itself, can interact with the gel network and this process can be monitored easily by measurement of relaxation times. As a proof of principle, the selective interaction of 2,2'-bis(hydroxymethyl)biphenyl over diphenylmethane with the self-assembled fibers formed by one of the gelators in benzene is described.  相似文献   

7.
基于均苯三甲酸与对羟基吡啶的超分子水凝胶   总被引:1,自引:0,他引:1  
以均苯三甲酸和对羟基吡啶为原料, 采用简便方法合成了一种新的凝胶因子, 并采用1H NMR、IR和元素分析确认其结构. 红外光谱中2849和1894 cm-1处出峰证明羧基与吡啶基间形成了氢键. 在凝胶化过程中, 凝胶因子可自组装形成纤维状网络结构. 随着凝胶因子浓度的增加, 纤维搭接逐渐致密, 凝胶网络密度逐渐增大, 可冻结水含量逐渐增加. 因此, 通过改变凝胶因子浓度可有效控制凝胶的结构及性能. 该凝胶因子在较低浓度下形成的超分子水凝胶在100 ℃下也能够稳定存在.  相似文献   

8.
Insight is provided into the aggregation thermodynamics associated to hydrogel formation by molecular gelators derived from L-valine and L-isoleucine. Solubility data from NMR measurements are used to extract thermodynamic parameters for the aggregation in water. It is concluded that at room temperature and up to 55?°C, these systems form self-assembled fibrillar networks in water with quite low or zero enthalpic component, whereas the entropy of the aggregation is favorable. These results are explained by considering that the hydrophobic effect is dominant in the self-assembly. However, studies by NMR and IR spectroscopy reveal that intermolecular hydrogen bonding is also a key issue in the aggregation process of these molecules in water. The low enthalpy values measured for the self-assembly process are ascribed to the result of a compensation of the favorable intermolecular hydrogen-bond formation and the unfavorable enthalpy component of the hydrophobic effect. Additionally, it is shown that by using the hydrophobic character as a design parameter, enthalpy-controlled hydrogel formation, as opposed to entropy-controlled hydrogel formation, can be achieved in water if the gelator is polar enough. It is noteworthy that these two types of hydrogels, enthalpy-versus entropy-driven hydrogels, present quite different response to temperature changes in properties such as the minimum gelator concentration (mgc) or the rheological moduli. Finally, the presence of a polymorphic transition in a hydrogel upon heating above 70?°C is reported and ascribed to the weakening of the hydrophobic effect upon heating. The new soft polymorphic materials present dramatically different solubility and rheological properties. Altogether these results are aimed to contribute to the rational design of molecular hydrogelators, which could be used for the tailored preparation of this type of soft materials. The reported results could also provide ground for the rationale of different self-assembly processes in aqueous media.  相似文献   

9.
Properties such as shear modulus, gelation time, structure of supramolecular hydrogels are strongly dependent on self-assembly, gelation triggering mechanism and processes used to form the gel. In our work we extend reported rheology analysis methodologies to pH-triggered supramolecular gels to understand structural insight using a model system based on N−N’ Dibenzoyl-L-Cystine pH-triggered hydrogelator and Glucono-δ-Lactone as the trigger. We observed that Avrami growth model when applied to time-sweep rheological data of gels formed at lower trigger concentrations provide estimates of fractal dimension which agree well compared with visualization of the microstructure as seen via Confocal Laser Scanning Microscopy, for a range of gelator concentrations.  相似文献   

10.
The investigation on structure-property correlation is important for understanding the gelating mechanism of supramolecular hydrogels. In this paper, a low-molecular-weight hydrogelator (termed as gelator 1) prepared from 1,2,4,5-benzene tetracarboxylic acid (BTA) and 4-hydroxy pyridine (PHP) was able to gel water effectively. The influence of environmental stimulation, such as cooling speed and ultrasonic treatment, on the structure of the assembling fibers and the macroscopic properties of the gels was investigated via multiple techniques. The results indicated that the fiber size decreased as increasing the cooling speed and the smallest fibers were obtained under ultrasonic treatment. As the fibers became smaller, the gel with higher T(gel), lower bonded water content and higher dynamic modulus was obtained. Therefore it is possible to control the gel performances via the environmental stimulation. The relationship between the assembled structure and properties is helpful for understanding the gel formation mechanism and makes the gels suitable for different applications.  相似文献   

11.
Low‐molecular‐weight organic hydrogelators (LMHGs) that can rigidify water into soft materials are desirable in various applications. Herein, we report the excellent hydrogelating properties of a simple synthetic auxin–amino‐acid conjugate, naphthalene‐1‐acetamide of L ‐phenylalanine ( 1‐NapF , Mw=333.38 Da), which gelated water even at 0.025 wt %, thereby making it the most‐efficient LMHG known. Optically transparent gels that exhibited negligible scattering in the range 350–900 nm were obtained. A large shift from the theoretical pKa value of the gelator was observed. The dependence of the minimum gelator concentration (MGC) and the gel‐melting temperatures on the pH value indicated the importance of H‐bonding between the carboxylate groups on adjacent phenylalanine molecules in the gelator assembly. FTIR spectroscopy of the xerogels showed a β‐sheet‐like assembly of the gelator. Variable‐temperature 1H NMR spectroscopy demonstrated that π stacking of the aromatic residues was also partly involved in the gelator assembly. TEM of the xerogel showed the presence of a dense network of thin, high‐aspect‐ratio fibrillar assemblies with diameters of about 5 nm and lengths that exceeded a few microns. Rheology studies showed the formation of stable gels. The entrapment of water‐soluble dyes afforded extremely fluorescent gels that involved the formation of J‐aggregates by the dye within gel. A strong induced‐CD band established that the RhoB molecules were interacting closely with the chiral gelator aggregates. H‐bonding and electrostatic interactions, rather than intercalation, seemed to be involved in RhoB binding. The addition of chaotropic reagents, as well as increasing the pH value, disassembled the gel and promoted the release of the entrapped dye with zero‐order kinetics.  相似文献   

12.
A new hydrogelator based on L ‐phenylalanine with a long hydrophobic chain and positively charged terminus was synthesized, and its gelation behavior in H2O was investigated. Polarized optical microscopy (POM), field emission scanning electron microscopy (FE‐SEM), and X‐ray diffraction (XRD) results indicate that the hydrogelator self‐assembles into fibres‐like aggregates which then lead to the formation of a hydrogel. 1H‐NMR and CD spectra of hydrogels and aqueous solution revealed that intermolecular H‐bonding between the amide groups was the driving force for gelation. A luminescence study, in which ANS (8‐anilinonaphthalene‐1‐sulfonic acid) was used as a probe, indicated that the hydrophobic interactions between long chains were the driving force for gelation. Consequently, it was proved that the hydrogelator self‐assembles into fibre‐like aggregates and then forms supramolecular hydrogels through the H‐bonding and hydrophobic interactions.  相似文献   

13.
Proton nuclear spin relaxation has been for the first time extensively used for a structural and dynamical study of low-molecular-weight organogels. The gelator in the present study is a modified phenylalanine amino acid bearing a naphthalimide moiety. From T(1) (spin-lattice relaxation time in the laboratory frame) and T(1ρ) (spin-lattice relaxation time in the rotating frame) measurements, it is shown that the visible gelator NMR spectrum below the liquid-gel transition temperature corresponds to a so-called isotropic compartment, where gelator molecules behave as in a liquid phase but exchange rapidly with the molecules constituting the gel structure. This feature allows one to derive, from accessible parameters, information about the gel itself. Nuclear Overhauser effect spectroscopy (NOESY) experiments have been exploited in view of determining not only cross-relaxation rates but also specific longitudinal rates. The whole set of relaxation parameters (at 25 °C) leads to a correlation time of 5 ns for gelator molecules within the gel structure and 150 ps for gelator molecules in the isotropic phase. This confirms, on one hand, the flexibility of the organogel fibers and, on the other hand, the likely presence of clusters in the isotropic phase. Concerning cross-relaxation rates, a thorough theoretical investigation in multispin systems of direct and relayed correlations in a NOESY spectrum allows one to make conclusions about contacts (around 2-3 ?) not only between naphtalimide moieties of different gelator molecules but also between the phenyl ring and the naphtalimide moiety again of different gelator molecules. As a result, not only is the head-to-tail structure of amino acid columns confirmed but also the entangling of nearby columns by the naphthalimide moieties is demonstrated.  相似文献   

14.
Developing cavity-based supramolecular hydrogels is in its infancy because not many such hydrogelators are available. Reported herein is our creation of rigid cavitand cyclotriveratrylene (CTV) based hydrogelators from the molecular backbones of CTVs that were in limited cases shown to form organogels. For doing so deprotonable -COOH or protonable -NH(2) was introduced as terminal group into the rigid and hydrophobic CTV backbones. We thus successfully obtained optically anisotropic supramolecular hydrogels from these new CTVs hydrogelators with excellent thermostability and high tolerance towards strong electrolytes. The obtained CTV-1 and CTV-2 hydrogels are luminescent and exhibit reversible gel-to-sol and sol-to-gel transitions upon pH variations. The success in creating CTV-1 and CTV-2 hydrogelators on the basis of the skeleton of a CTV-organogelator suggests that balancing the hydrophilic and hydrophobic characters of the ionic and hydrophobic moieties well in the gelator molecule is important for designing a promising hydrogelator.  相似文献   

15.
We present herein the preparation of four different hydrogels based on the pseudopeptide gelator Fmoc‐l ‐Phe‐d ‐Oxd‐OH (Fmoc=fluorenylmethyloxycarbonyl), either by changing the gelator concentration or adding graphene oxide (GO) to the water solution. The hydrogels have been analysed by rheological studies that demonstrated that pure hydrogels are slightly stronger compared to GO‐loaded hydrogels. Then the hydrogels efficiency to trap the cationic methylene blue (MB) and anionic eosin Y (EY) dyes has been analyzed. MB is efficiently trapped by both the pure hydrogel and the GO‐loaded hydrogel through π–π interactions and electrostatic interactions. In contrast, the removal of the anionic EY is achieved in less satisfactory yields, due to the unfavourable electrostatic interactions between the dye, the gelator and GO.  相似文献   

16.
A novel amphiphilic dendron ( AZOC8GAc ) with three l ‐glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self‐assembled into chiral‐twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo‐irradiation. During the photo‐triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host–guest interaction with α‐cyclodextrin (α‐CD), designated as supra‐dendron gelator AZOC8GAc/α‐CD . The supra‐dendron showed similar gelation behavior to that of AZOC8GAc , but with enhanced photoisomerization‐transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self‐assembly of the supra‐dendron is a hierarchical or multi‐supramolecular self‐assembling process. This work has clearly illustrated that the hierarchical and multi‐supramolecular self‐assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching.  相似文献   

17.
Enzymatic hydrogelation is a totally different process to the heating‐cooling gelation process, in which the precursors of the gelators can be involved during the formation of self‐assembled structures. Using thixotropic hydrogels formed by a super gelator as our studied system, we demonstrated that the enzyme concentration/conversion rate of enzymatic reaction had a strong influence on the morphology of resulting self‐assembled nanostructures and the property of resulting hydrogels. The principle demonstrated in this study not only helps to understand and elucidate the phenomenon of self‐assembly triggered by enzymes in biological systems, but also offers a unique methodology to control the morphology of self‐assembled structures for specific applications such as controlled drug release.  相似文献   

18.
The macroscopic self‐assembly of polymeric hydrogels modified with β‐cyclodextrin (βCD gel), ferrocene (Fc gel), and styrenesulfonic acid sodium salt (SSNa gel) was investigated. Under reductive conditions, the Fc gel selectively adhered to the βCD gel through a host–guest interaction. On the other hand, the oxidized ferrocenium (Fc+) gel selectively adhered to the SSNa gel through an ionic interaction under oxidative conditions. The adhesion strength was estimated by a tensile test. We finally succeeded in forming an ABC‐type macroscopic assembly of all three gels through two discrete noncovalent interactions.  相似文献   

19.
A new fluorinated version of a cyclic β‐aminoalcohol gelator derived from 1,2,3,4‐tetrahydroisoquinoline is presented. The gelator is able to gel various nonprotic solvents through OH???N hydrogen bonds and additional CH???F interactions due to the introduction of fluorine. A bimolecular lamellar structure is formed in the gel phase, which partly preserves the pattern of molecular organization in the single crystal. The racemate of the chiral gelator shows lower gelation ability than its enantiomer because of a higher tendency to form microcrystals, as shown by X‐ray diffraction analysis. The influence of fluorination on the self‐assembly of the gelator and the properties of the gel was investigated in comparison to the original fluorine‐free gel system. The introduction of fluorine brings two new features. The first is good recognition of o‐xylene by the gelator, which induces an in situ transition from gels of o‐xylene and of an o‐xylene/toluene mixture to identical single crystals with unique tubular architecture. The second is the enhanced stability of the toluene gel towards ions, including quaternary ammonium salts, which enables the preparation of a stable toluene gel in the presence of chloroaurate or chloroplatinate. The gel system can be used as a template for the synthesis of spherical gold nanoparticles with a diameter of 5 to 9 nm and wormlike platinum nanostructures with a diameter of 2 to 3 nm and a length of 5 to 12 nm. This is the first example of a synthesis of platinum nanoparticles in an organogel medium. Therefore, the appropriate introduction of a fluorine atom and corresponding nonbonding interactions into a known gelator to tune the properties and functions of a gel is a simple and effective tactic for design of a gel system with specific targets.  相似文献   

20.
The present study describes the rational design and synthesis of amino acid-based amphiphilic hydrogelators, which were systemically fine-tuned at the head group to develop pH-responsive hydrogels. To understand the basic structural requirements of a low molecular weight amphiphilic hydrogelator, 10 analogous amphiphiles based on L-phenylalanine and L-tyrosine with structurally related head group were synthesized. Among them, three with quaternary ammonium substitution at the head group formed transparent hydrogels at room temperature while others were unable to gelate water. To establish correlations between the head group architecture of the gelators and their supramolecular arrangements, a variety of spectroscopic and microscopic techniques were investigated that showed that a balance between hydrophilicity and hydrophobicity is required to achieve hydrogelation. Interestingly, the gelator with tyrosinate in its head group showed remarkable response toward external pH. All hydrogels including the pH-responsive one were used in the controlled and/or pH-triggered release of entrapped (with in hydrogels) vitamin B12 and cytochrome c at different pHs. Since the hydrogels were formed at room temperature without heating, this could be very important during the entrapment of biomolecules such as proteins because of their heat sensitivity. At biological pH (7.4), the release of entrapped biomolecules from all three hydrogels was caused by diffusion through the gel structure, but at endosomal pH (approximately 5.5) and further lower pH, the release rate of biomolecules from the pH-responsive hydrogel with tyrosinate head group (pKa approximately equal to 7.2) increased by 9-10-fold compared to that observed at physiological pH, because of gel dissolution. Retention of the structure and activity of released biomolecule has established the prospect of the hydrogel as an efficient drug delivery vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号