首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
By using a radio‐frequency sputtering method, we synthesized large‐area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine‐doped tin oxide (FTO), as ecofriendly, cost‐effective counter electrodes (CE) for dye‐sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X‐ray diffraction, and X‐ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field‐emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge‐transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power‐conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2‐based DSCCs, thus signifying the importance of sputtering time on DSSC performance.  相似文献   

2.
It is generally believed that silver or silver‐based compounds are not suitable counter electrode (CE) materials for dye‐sensitized solar cells (DSSCs) due to the corrosion of the I?/I3? redox couple in electrolytes. However, Ag2S has potential applications in DSSCs for catalyzing I3? reduction reactions because of its high carrier concentration and tiny solubility product constant. In the present work, CE manufactured from Ag2S nanocrystals ink exhibited efficient electrocatalytic activity in the reduction of I3? to I? in DSSCs. The DSSC consisting of Ag2S CE displayed a higher power conversion efficiency of 8.40 % than that of Pt CE (8.11 %). Moreover, the devices also showed the characteristics of fast activity onset, high multiple start/stop capability and good irradiated stability. The simple composition, easy preparation, stable chemical property, and good catalytic performance make the developed Ag2S CE as a promising alternative to Pt CE in DSSCs.  相似文献   

3.
N‐coordinate Pd2+ complexes [PdL2] (L: N‐N‐quinoline‐8‐yl‐R‐benzenesulfonamides) ( 6–10 ) and [PdL2] complexes assembled on multi‐wall carbon nanotubes (MWCNTs) hybrid nanomaterials were fabricated and characterized by various techniques. The [PdL2] impregnated MWCNTs materials ( 11–15 ) were applied as a counter electrode (CE) catalyst for triiodide to iodide reduction reaction in the dye‐sensitized solar cells (DSSC) and investigated electro‐catalytic activities. The MWCNTs‐supported [PdL2] CEs ( 11–15 ) are exhibits as Pt‐free CE with good power conversion efficiencies (PCEs), and compared to platinum and bare MWCNTs CEs and the PCE of bare MWCNTs was clearly improved by means of [PdL2] complexes ( 6–10 ). The DSSCs based on the hybrid counter electrodes (CEs) ( 11–15 ) and bare MWCNTs are indicated a relative efficiency ( ? rel ) of 64.27%, 54.07%, 53.75%, 51.52% 44.82% and 27.27% concerning a Pt CE control device set at 100%. The report emphasizes that [PdL2] impregnated MWCNTs type counter electrodes (CEs) ( 11–15 ) are promising as effectively catalyst in working device design, particularly taking into account the eco‐friendly approach of the hybrids.  相似文献   

4.
In this study, a newly synthesized macrocyclic copper complex, [Cu(C10H20N8)(C4H8N4)](BF4)2, was used for a reaction with graphene oxide. Macrocyclic copper complex/graphene‐based composite materials were prepared and applied to the counter electrodes (CEs) of dye‐sensitized solar cells (DSSCs). As the level of the macrocyclic copper complex increased, the catalytic sites on the surface of the CE increased. The results showed that the device efficiency of the composite GO/Cu (1:10) CE was 7.61%, which was better than that of the Platinum (Pt) CE (7.04%). The device efficiency of the DSSC was enhanced effectively because the electrocatalytic activity of the CE was enhanced, and the interface impedance of the device was reduced. Therefore, the macrocyclic copper complex/graphene‐based composite materials may have the potential to replace traditional Pt to increase efficiency and reduce the fabrication cost of DSSCs.  相似文献   

5.
Two‐dimensional (2D) semiconducting nanosheets have emerged as an important field of materials, owing to their unique properties and potential applications in areas ranging from electronics to catalysis. However, the controlled synthesis of ultrathin 2D nanosheets remains a great challenge, due to the lack of an intrinsic driving force for anisotropic growth. High‐quality ultrathin 2D FeSe2 nanosheets with average thickness below 7 nm have been synthesized on large scale by a facile solution method, and a formation mechanism has been proposed. Due to their favorable structural features, the as‐synthesized ultrathin FeSe2 nanosheets exhibit excellent electrocatalytic activity for the reduction of triiodide to iodide and low charge‐transfer resistance at the electrolyte–electrode interface in dye‐sensitized solar cells (DSSCs). The DSSCs with FeSe2 nanosheets as counter electrode material achieve a high power conversion efficiency of 7.53 % under a simulated solar illumination of 100 mW cm?2 (AM 1.5), which is comparable with that of Pt‐based devices (7.47 %).  相似文献   

6.
Podlike nitrogen‐doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)‐FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I?/I3? redox reaction of dye‐sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)‐FeNi composite. DSSCs with Pod(N)‐FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82 %, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)‐FeNi composite thus shows promise as an environmentally friendly, low‐cost, and highly efficient CE material for DSSCs.  相似文献   

7.
With a facile electrophoretic deposition and chemical bath process, CoS nanoparticles have been uniformly dispersed on the surface of the functionalized graphene nanosheets (FGNS). The composite was employed as a counter electrode of dye‐sensitized solar cells (DSSCs), which yielded a power conversion efficiency of 5.54 %. It is found that this efficiency is higher than those of DSSCs based on the non‐uniform CoS nanoparticles on FGNS (4.45 %) and built on the naked CoS nanoparticles (4.79 %). The achieved efficiency of our cost‐effective DSSC is also comparable to that of noble metal Pt‐based DSSC (5.90 %). Our studies have revealed that both the exceptional electrical conductivity of the FGNS and the excellent catalytic activity of the CoS nanoparticles improve the conversion efficiency of the uniformly FGNS‐CoS composite counter electrode. The electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization have evidenced the best catalytic activity and the fastest electron transport. Additionally, the dispersion condition of CoS nanoparticles on FGNS plays an important role for catalytic reduction of I3?.  相似文献   

8.
Dye‐sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low‐carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt‐free binary Co‐Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co‐Ni‐based DSSCs are higher than those of Pt‐only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39 %, fast start‐up, multiple start/stop cycling, and good stability under extended irradiation.  相似文献   

9.
Understanding the impact of the defects/defect density of electrocatalysts on the activity in the triiodide (I3?) reduction reaction of dye‐sensitized solar cells (DSSCs) is indispensable for the design and construction of high‐efficiency counter electrodes (CEs). Active‐site‐enriched selenium‐doped graphene (SeG) was crafted by ball‐milling followed by high‐temperature annealing to yield abundant edge sites and fully activated basal planes. The density of defects within SeG can be tuned by adjusting the annealing temperature. The sample synthesized at an annealing temperature of 900 °C exhibited a superior response to the I3? reduction with a high conversion efficiency of 8.42 %, outperforming the Pt reference (7.88 %). Improved stability is also observed. DFT calculations showed the high catalytic activity of SeG over pure graphene is a result of the reduced ionization energy owing to incorporation of Se species, facilitating electron transfer at the electrode–electrolyte interface.  相似文献   

10.
Low‐cost transparent counter electrodes (CEs) for efficient dye‐sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)‐supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic‐liquid‐assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density–voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements. The CNT/Pt hybrid films exhibit high electrocatalytic activity for I?/I3? with a weak dependence on film thickness. A transparent CNT/Pt hybrid CE film about 100 nm thick with a transparency of about 70 % (at 550 nm) can result in a high power conversion efficiency (η) of over 8.5 %, which is comparable to that of pyrolysis platinum‐based DSSCs, but lower cost. Furthermore, DSSC based on flexible CNT/Pt hybrid CE using indium‐doped tin oxide‐coated polyethylene terephthalate as the substrate also exhibits η=8.43 % with Jsc=16.85 mA cm?2, Voc=780 mV, and FF=0.64, and this shows great potential in developing highly efficient flexible DSSCs.  相似文献   

11.
By means of density functional theory calculations, the adsorption process of I2 at Pt (111) surface in dye-sensitized solar cells (DSSCs) has been investigated. The obtained adsorption energies and stable structures depending on the adsorption sites of the Pt surface are in good agreement with experimental values. Our results show that the dissociative chemisorption and the non-dissociative chemisorption are competitive for the adsorption of I2 on the Pt surface, and the dissociative pathway is more favored in energy. This study is expected to enrich the understanding on the origin of the excellent heterogeneous catalytic performance of Pt for triiodide reduction and the complex iodine chemistry in DSSCs. Understanding of this adsorption mechanism is helpful for rational screening for redox couple and the Pt-free alternative counter electrode materials.  相似文献   

12.
Mesoporous cobalt sulfide nanotube arrays on FTO‐coated glass were synthesized by combining three simple technologies: the selective etching of ZnO sacrificial templates, mesoporous Co3O4 formation from cobalt‐chelated chitosan, and ion‐exchange reaction (IER). The mesoporous Co3O4 nanotubes composed of the Co3O4 nanoparticles possess a high surface area and are taken advantage for further removal of templates and IER. The morphologies and crystal structures of the CoS2 nanotube arrays were characterized by SEM, TEM, and XRD analyses. Their electrocatalytic properties were determined by electrochemical analyses including cyclic voltammetry measurements and Tafel polarization. The DSSCs assembled with a CoS2 counter electrode achieved a power conversion efficiency of 6.13 %, which was comparable to that of the DSSC with the Pt counter electrode (6.04 %). This indicates that the mesoporous CoS2 nanotube array can be a low‐cost and efficient alternative for the reduction of electrolytes in DSSCs.  相似文献   

13.
Tungsten dioxide (WO(2)) nanorods were synthesized, which showed excellent catalytic activity for the reduction of triiodide to iodide. The dye-sensitized solar cell (DSC) using WO(2) as a counter electrode (CE) reached a high energy conversion efficiency of 7.25%, which can match the performance of the DSC based on a Pt CE.  相似文献   

14.
Dye‐sensitized solar cells (DSSCs) have received significant attention from the scientific community since their discovery in 1991. However, the high cost and scarcity of platinum has motivated researchers to seek other suitable materials for the counter electrode of DSSCs. Owing to their exceptional properties such as high conductivity, good electrochemical activity, and low cost, carbon nanotubes (CNTs) have been considered as promising alternatives to expensive platinum (Pt) in the counter electrode of DSSCs. Herein, we provide a Minireview of the CNTs use in the counter electrode of DSSCs. A brief overview of Pt‐based counter electrodes is also discussed. Particular attention is given to the recent advances of counter electrodes with CNT‐based composite structures.  相似文献   

15.
The exploration of cost‐effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye‐sensitized solar cells (DSSCs). Transparent counter electrodes based on binary‐alloy metal selenides (M‐Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution‐based method and employed in efficient bifacial DSSCs. Owing to superior charge‐transfer ability for the I?/I3? redox couple, electrocatalytic activity toward I3? reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85Se, 7.85 % and 4.37 % for Ni0.85Se, 6.43 % and 4.24 % for Cu0.50Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.  相似文献   

16.
Carbon nanotubes (CNTs) have been widely considered as one of the promising candidates for replacing fluorine‐doped tin oxide (FTO)/platinum (Pt) electrodes to reduce the fabrication cost of dye‐sensitized solar cells (DSSCs). Here, we report that a bilayer transparent film containing N‐doped CNTs (which are highly catalytic) and normal CNTs (which are highly conductive) as a counter electrode in DSSCs results in efficiencies up to 2.18 %, yet still maintains a good transparency with a transmittance of approximately 57 % at 550 nm.  相似文献   

17.
The ternary iron‐group thiospinels of metal diindium sulfides (MIn2S4, M=Fe, Co, Ni) with a vertically aligned nanosheet array structure are fabricated through an in situ solvothermal method on F‐doped tin oxide (FTO) substrates, which are employed as one type of platinum (Pt)‐free counter electrodes (CEs) in structure‐dependent dye‐sensitized solar cells (DSSCs). A DSSC assembled with ternary CoIn2S4 CE achieves an photoelectric conversion efficiency (PCE) of 8.83 %, outperforming than that of FeIn2S4 (7.18 %) and NiIn2S4 (8.27 %) CEs under full sunlight illumination (100 mW cm−2, AM 1.5 G), which is also comparable with that of the Pt CE (8.19 %). Putting aside that the interconnected nanosheet array provides fast electron transfer and electrolyte diffusion channels, the highest PCE of CoIn2S4 based DSSC results from its largest specific surface area (144.07 m2 g−1), providing abundant active sites and the largest electron injection efficiency from CE to electrolyte.  相似文献   

18.
Many materials have been tried as the counter electrode (CE) material as a substitute to the noble metal Pt in dye-sensitized solar cells (DSSCs). The CE property is critical to the operation of a DSSC as it catalyzes the reduction of I3- ions and retrieves the electrons from the photoanode. Here we have explored the application of manganese dioxide (MnO2) and copper-doped manganese dioxide (Cu-MnO2) nanoparticles as CE candidates for DSSCs mainly as low-cost alternatives to Pt. A simple hydrothermal method was followed to synthesize α-MnO2 and Cu-MnO2 nanoparticles at a temperature of 140 °C for 14 h. The nanoparticles were characterized to prove its electrocatalytic abilities for DSSCs. DSSC devices fabricated with 10 wt% Cu-MnO2 as CE showed the best VOC of 781 mV, ISC of 3.69 mA/cm2, FF of 0.50, and %PCE of 1.7 whereas Pt as CE showed VOC of 780 mV, ISC of 14.8 mA/cm2, FF of 0.43, and %PCE of 5.83 under 0.85 Sun. The low-cost feature of using Cu-MnO2 is encouraging to further study the factors that can improve the efficiency of DSSCs with alternative CEs to conventional Pt electrodes.  相似文献   

19.
The publication covers materials and cluster science aspects of the platinum counter electrode (CE) in the “monolithic type” dye sensitized solar cell systems (DSSC). Nanocluster based catalytic platinum layers are utilized for the iodide/triiodide reduction in different electrolytes. Various preparative methods have been applied for the preparation of platinum nanoparticles for the CE. The structure, properties, and performance of the different nanoparticles obtained by thermal decomposition of H2PtCl6, triorganohydroborate reduction of a platinum salt, reductive stabilization of Pt(acac)2 by trialkylaluminium, the “polyol method”, and the reduction of the H2PtCl6 by hydrogen are compared. The oxidation states of the platinum surface- and core-atoms were analyzed by X-Ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Near Edge Structure (XANES) respectively. Size and the crystalline structure of the particles were investigated by Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD). The charge transfer resistance of the different catalytic platinum layers resulted from the above mentioned preparative methods, was compared by electrochemical impedance spectroscopy (EIS). Dedicated to Prof. Günter Schmid on the occasion of 70th anniversary  相似文献   

20.
A new triiodide ion‐selective electrode based on a charge‐transfer complex of iodine with ditertbutyl‐dicyclohexyl‐18‐crown‐6 (t‐Bu)2DC18C6 as membrane carrier was prepared. The electrode has a linear dynamic range from 6.3 × 10?3‐5 × 10?6 with a Nernstian response of 58.6 ± 1 mV decade?1 and a detection limit of 1.3 × 10?6 M. The response time of the sensor was 25 s. The membrane could be used for two months without any divergence in potentials. The electrode exhibits an anti‐Hofmeistetr selectivity sequence with a preference for triiodide at pH 2.0‐10.0. The response mechanism of the electrode was investigated by Uv‐Vis spectroscopic technique. The electrode can be used for the determination of ascorbic acid in orange juice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号