首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new bridging ligand, 2,3‐di(2‐pyridyl)‐5‐phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN‐CNN‐type coordination mode. The reaction of dpppzH with cis‐[(bpy)2RuCl2] (bpy=2,2′‐bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)]2+ ( 12+ ) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)]3+ ( 23+ ) was prepared from complex 12+ and [(Mebip)RuCl3] (Mebip=bis(N‐methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C?CPh)]2+ ( 42+ ) has been prepared from complex 12+ , in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 12+ is emissive at room temperature, with an emission λmax=695 nm. No emission was detected for complex 23+ at room temperature in MeCN, whereas complex 42+ displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3‐di(2‐pyridyl)‐5,6‐diphenylpyrazine.  相似文献   

2.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

3.
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione).  相似文献   

4.
A rare example of a mononuclear complex [(bpy)2Ru(L1?H)](ClO4), 1 (ClO4) and dinuclear complexes [(bpy)2Ru(μ‐L1?2H)Ru(bpy)2](ClO4)2, 2 (ClO4)2, [(bpy)2Ru(μ‐L2?2H)Ru(bpy)2](ClO4)2, 3 (ClO4)2, and [(bpy)2Ru(μ‐L3?2H)Ru(bpy)2](ClO4)2, 4 (ClO4)2 (bpy=2,2′‐bipyridine, L1=2,5‐di‐(isopropyl‐amino)‐1,4‐benzoquinone, L2=2,5‐di‐(benzyl‐amino)‐1,4‐benzoquinone, and L3=2,5‐di‐[2,4,6‐(trimethyl)‐anilino]‐1,4‐benzoquinone) with the symmetrically substituted p‐quinone ligands, L, are reported. Bond‐length analysis within the potentially bridging ligands in both the mono‐ and dinuclear complexes shows a localization of bonds, and binding to the metal centers through a phenolate‐type “O?” and an immine/imminium‐type neutral “N” donor. For the mononuclear complex 1 (ClO4), this facilitates strong intermolecular hydrogen bonding and leads to the imminium‐type character of the noncoordinated nitrogen atom. The dinuclear complexes display two oxidation and several reduction steps in acetonitrile solutions. In contrast, the mononuclear complex 1 + exhibits just one oxidation and several reduction steps. The redox processes of 1 1+ are strongly dependent on the solvent. The one‐electron oxidized forms 2 3+, 3 3+, and 4 3+ of the dinuclear complexes exhibit strong absorptions in the NIR region. Weak NIR absorption bands are observed for the one‐electron reduced forms of all complexes. A combination of structural data, electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations is used to elucidate the electronic structures of the complexes. Our DFT results indicate that the electronic natures of the various redox states of the complexes in vacuum differ greatly from those in a solvent continuum. We show here the tuning possibilities that arise upon substituting [O] for the isoelectronic [NR] groups in such quinone ligands.  相似文献   

5.
We report the unprecedented observation and unequivocal crystallographic characterization of the meta‐stable ligand loss intermediate solvento complex trans‐[Ru(bpy)(κ2‐btz)(κ1‐btz)(NCMe)]2+ ( 1 a ) that contains a monodentate chelate ligand. This and analogous complexes can be observed during the photolysis reactions of a family of complexes of the form [Ru($\widehat{NN}$ )(btz)2]2+ ( 1 a – d : btz=1,1′‐dibenzyl‐4,4′‐bi‐1,2,3‐triazolyl; $\widehat{NN}$ =a) 2,2′‐bipyridyl (bpy), b) 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy), c) 4,4′‐dimethoxy‐2,2′‐bipyridyl (dmeobpy), d) 1,10‐phenanthroline (phen)). In acetonitrile solutions, 1 a – d eventually convert to the bis‐solvento complexes trans‐[Ru($\widehat{NN}$ )(btz)(NCMe)2]2+ ( 3 a – d ) along with one equivalent of free btz, in a process in which the remaining coordinated bidentate ligands undergo a new rearrangement such that they become coplanar. X‐ray crystal structure of 3 a and 3 d confirmed the co‐planar arrangement of the $\widehat{NN}$ and btz ligands and the trans coordination of two solvent molecules. These conversions proceed via the observed intermediate complexes 2 a – d , which are formed quantitatively from 1 a – d in a matter of minutes and to which they slowly revert back on being left to stand in the dark over several days. The remarkably long lifetime of the intermediate complexes (>12 h at 40 °C) allowed the isolation of 2 a in the solid state, and the complex to be crystallographically characterized. Similarly to the structures adopted by complexes 3 a and d , the bpy and κ2‐btz ligands in 2 a coordinate in a square‐planar fashion with the second monodentate btz ligand coordinated trans to an acetonitrile ligand.  相似文献   

6.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

8.
Reactions of [{Ru(tmpa)}2(μ‐Cl)2][ClO4]2, ( 2 [ClO4]2, tmpa=tris(2‐pyridylmethyl)amine) with 2,5‐dihydroxy‐1,4‐benzoquinone ( L1 ), 2,5‐di‐[2,6‐(dimethyl)‐anilino]‐1,4‐benzoquinone ( L2 ), or 2,5‐di‐[2,4,6‐(trimethyl)‐anilino)]‐1,4‐benzoquinone ( L3 ) in the presence of a base led to the formation of the dinuclear complexes [{Ru(tmpa)}2(μ‐ L1 ?2 H)][ClO4]2 ( 3 [ClO4]2), [{Ru(tmpa)}2(μ‐ L2 ?2 H)][ClO4]2 ( 4 [ClO4]2), and [{Ru(tmpa)}2(μ‐ L3 ?2 H)][ClO4]2 ( 5 [ClO4]2). Structural characterization of 5 [ClO4]2 showed the localization of the double bonds within the quinonoid ring and a twisting of the mesityl substituents with respect to the quinonoid plane. Cyclic voltammetry of the complexes show two reversible oxidation and quinonoid‐based reduction processes. Results obtained from UV/Vis/NIR and EPR spectroelectrochemistry are invoked to discuss ruthenium‐ versus quinonoid‐ligand‐centered redox activity. The complex 3 [ClO4]2 is compared to the reported complex [{Ru(bpy)}2(μ‐ L1 ?2 H)]2+ ( 12+ , bpy=2,2′‐bipyridine). The effects of substituting the bidentate and better π‐accepting bpy co‐ligands with tetradentate tmpa ligands [pure σ‐donating (amine) as well as σ‐donating and π‐accepting (pyridines)] on the redox and electronic properties of the complexes are discussed. Comparisons are also made between complexes containing the dianionic forms of the all‐oxygen‐donating L1 ligand with the L2 and L3 ligands containing an [O,N,O,N] donor set. The one‐electron oxidized forms of the complexes show absorption in the NIR region. The position as well as the intensity of this band can be tuned by the substituents on the quinonoid bridge. In addition, this band can be switched on and off by using tunable redox potentials, making such systems attractive candidates for NIR electrochromism.  相似文献   

9.
The ligand pteridino[6,7‐f] [1,10]phenanthroline‐11,13‐diamine (ppn) and its RuII complexes [Ru(bpy)2(ppn)]2+ ( 1 ; bpy=2,2′‐bipyridine) and [Ru(phen)2(ppn)]2+ ( 2 ; phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis, electrospray MS, 1H‐NMR, and cyclic voltammetry. The DNA‐binding behaviors of 1 and 2 were studied by spectroscopic and viscosity measurements. The results indicate that both complexes strongly bind to calf‐thymus DNA in an intercalative mode, with DNA‐binding constants Kb of (1.7±0.4)?106 M ?1 and (2.6±0.2)?106 M ?1, respectively. The complexes 1 and 2 exhibit excellent DNA‐‘light switch’ performances, i.e., they do not (or extremely weakly) show luminescence in aqueous solution at room temperature but are strongly luminescent in the presence of DNA. In particular, the experimental results suggest that the ancillary ligands bpy and phen not only have a significant effect on the DNA‐binding affinities of 1 and 2 but also have a certain effect on their spectral properties. [Ru(phen)2(ppn)]2+( 2 ) might be developed into a very prospective DNA‐‘light switch’ complex. To explain the DNA‐binding and spectral properties of 1 and 2 , theoretical calculations were also carried out applying the DFT/TDDFT method.  相似文献   

10.
A series of trans‐(Cl)‐[Ru(L)(CO)2Cl2]‐type complexes, in which the ligands L are 2,2′‐bipyridyl derivatives with amide groups at the 5,5′‐positions, are synthesized. The C‐connected amide group bound to the bipyridyl ligand through the carbonyl carbon atom is twisted with respect to the bipyridyl plane, whereas the N‐connected amide group is in the plane. DFT calculations reveal that the twisted structure of the C‐connected amide group raises the level of the LUMO, which results in a negative shift of the first reduction potential (Ep) of the ruthenium complex. The catalytic abilities for CO2 reduction are evaluated in photoreactions (λ>400 nm) with the ruthenium complexes (the catalyst), [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine; the photosensitizer), and 1‐benzyl‐1,4‐dihydronicotinamide (the electron donor) in CO2‐saturated N,N‐dimethylacetamide/water. The logarithm of the turnover frequency increases by shifting Ep a negative value until it reaches the reduction potential of the photosensitizer.  相似文献   

11.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

12.
《Electroanalysis》2005,17(17):1517-1522
In this paper, we report the first attempt to use humic acid (HA) as modifiers to prepare the organic‐inorganic hybrid modified glassy carbon electrodes based on HA‐silica‐PVA (poly(vinyl alcohol)) sol‐gel composite. Electroactive species of tris(2,2′‐bipyridyl)ruthenium(II) (Ru(bpy) ) can easily incorporate into the HA‐silica‐PVA films to form Ru(bpy) modified electrodes. The amount of Ru(bpy) incorporated in the composite films strongly depends on the amount of HA in the hybrid sol. Electrochemical and electrogenerated chemiluminescence (ECL) of Ru(bpy) immobilized in HA‐silica composite films coated on a glassy carbon electrode have been studied with tripropylamine (TPA) as the coreactant. The analytical performance of this modified electrode was evaluated in a flow injection analysis (FIA) system with a homemade flow cell. The as‐prepared electrode showed good stability and high sensitivity. The detection limits (S/N=3) were 0.050 μmol L?1 for TPA and 0.20 μmol L?1 for oxalate, and the linear ranges were from 0.10 μmol L?1 to 1.0 mmol L?1 for TPA and from 1.0 μmol L?1 to 1.0 mmol L?1 for oxalate, respectively. The resulting electrodes were stable over two months.  相似文献   

13.
Based on the a ligand BDPPZ [(9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone] (1) and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes, [Ru(bpy)2L](PF6)2 (2), [Ru(phen)2L](PF6)2 (3), [Ru(dafo)2L](PF6)2 (4), [Ru(dcbpy)2L](PF6)2 (5) and [RuL3](PF6)2 (6) (where, L = ligand, bpy = 2,2′‐bipyridine, phen = 1,10‐phenantroline, dafo = 4,5‐diazafluoren‐9‐one and dcbpy = 3,3′‐dicarboxy‐2,2′‐bipyridine), have been synthesized and characterized by elemental analysis, UV–vis, FT‐IR, 1H and 13C‐NMR spectra (for ligand), molar conductivity measurements and X‐ray powder techniques. The electrochemical parameters of the substituted ligand and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes are reported by cyclic voltammetry. UV–vis spectroscopy is used to compare the differences between the conjugated π systems in this ligand and its Ru(II) metal complexes. The polypyridyl hetero‐ and homoleptic Ru(II) metal complexes also tested as catalysts for the formation of cyclic organic carbonates from carbon dioxide and liquid epoxides which served as both reactant and solvent. The results showed that the [Ru(L)3](PF6)2 (6) complex is more efficient than the other Ru(II) complexes for the formation of cyclic organic carbonates from carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Four polypyridyl bridging ligands BL1−4 containing open‐chain crown ether, where BL1−3 formed by the condensation of 4,5‐diazafluoren‐9‐oxime with diethylene glycol di‐p‐tosylate, triethylene glycol di‐p‐tosylate, and tetraethylene glycol di‐p‐tosylate, respectively. BL4 formed by the reaction of 4‐(1,10‐phenanthrolin‐5‐ylimino)methylphenol with triethylene glycol di‐p‐tosylate, have been synthesized. Reaction of Ru(bpy)2Cl2·2H2O with BL, respectively, afforded four bimetallic complexes [(bpy)2RuBL1−4Ru(bpy)2]4+ as [PF6] salts. Electrochemistry of these complexes is consistent with one RuII‐based oxidation and several ligand‐based reductions. These complexes show metal‐to‐ligand charge transfer absorption at 439‐452 nm and emission at 570‐597 nm.  相似文献   

15.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

16.
The proton‐induced Ru?C bond variation, which was previously found to be relevant in the water oxidation, has been investigated by using cyclometalated ruthenium complexes with three phenanthroline (phen) isomers. The designed complexes, [Ru(bpy)2(1,5‐phen)]+ ([ 2 ]+), [Ru(bpy)2(1,6‐phen)]+ ([ 3 ]+), and [Ru(bpy)2(1,7‐phen)]+ ([ 4 ]+) were newly synthesized and their structural and electronic properties were analyzed by various spectroscopy and theoretical protocols. Protonation of [ 4 ]+ triggered profound electronic structural change to form remote N‐heterocyclic carbene (rNHC), whereas protonation of [ 2 ]+ and [ 3 ]+ did not affect their structures. It was found that changes in the electronic structure of phen beyond classical resonance forms control the rNHC behavior. The present study provides new insights into the ligand design of related ruthenium catalysts.  相似文献   

17.
The solid state structure of η5‐2,5‐di‐(t‐butyl)phospholylgallium(I) 1 was determined by X‐ray diffraction at 190 K. The molecules of 1 are partly organized in a for sandwich complexes new type of structure: a Ga zigzag chain in which the aromatic phospholyl rings alternate on both sides of the chain.  相似文献   

18.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
New diketopyrrolopyrrole (DPP)‐containing conjugated polymers such as poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐1‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(1,6)PY)) and poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐2‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)‐catalyzed conditions. P(DTDPP‐alt‐(2,7)PY), incorporating 2,5‐bis(2‐octyldodecyl)‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione (DTDPP) at the 2,7‐position of a pyrene ring showed a lower band‐gap energy (E. = 1.65 eV) than the 1,6‐substituted analog, P(DTDPP‐alt‐(1,6)PY) (E = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6‐ to the 2,7‐position of the pyrene ring. An organic thin‐film transistor fabricated using the newly synthesized P(DTDPP‐alt‐(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V?1 s?1 (Ion/off ~ 106), which was much larger than that obtained using P(DTDPP‐alt‐(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP‐alt‐(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on IDS, photocontrolled memory could be realized under the variation of gate voltages. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
A novel polypyridine ligand, dipyrido[3,2‐a:2′,3′‐c]phenazine‐11‐carboxylic acid methyl ester (=dppz‐11‐CO2Me), and its ruthenium(II) complex, [Ru(bpy)2(dppz‐11‐CO2Me)]2+ ( 1 ), were synthesized and characterized. The binding properties of this complex to calf‐thymus DNA (CT‐DNA) were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that the complex binds to DNA in an intercalative mode and serves as a molecular ‘light switch’ for DNA. When irradiated at 365 nm, the complex 1 promoted the photocleavage of plasmid pBR‐322 DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号